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Abstract

This paper examines whether, in response to natural disasters, industrial policy can shape

innovation toward risk-mitigating technologies. We study the 1871 Chicago Fire and the

consequent policy banning wooden construction. Using a synthetic control framework,

we find that construction patenting and manufacturing in Chicago increased sharply, with

positive spillovers into related sectors. To distinguish the effects of the Fire and the policy,

we compare wood and non-wood construction, showing that gains were concentrated in

non-wood construction. Additionally, we study the 1872 Boston Fire, where no regulations

were implemented, and find no effect on patenting and a modest rise in manufacturing.
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INTRODUCTION

Natural disasters cause significant damage worldwide, and with ongoing climate change, these ad-

verse effects are expected to intensify over the coming decades. Adaptation critically hinges on tech-

nical change. Directed innovation in US agriculture, for example, has offset 20% of the potential

losses due to damaging climate trends since 1960 (Moscona and Sastry, 2023). Despite these prospec-

tive gains, economic theory indicates that market competition may lead to inefficiently low levels of

innovation in areas that will generate new products or technologies in the future (Acemoglu, 2012,

2023).
1

In this paper, we investigate whether public policy can address this inefficiency by guiding the inno-

vation response to natural disasters and supporting technologies that mitigate their adverse effects.

We examine how innovation and manufacturing responded to the 1871 Great Chicago Fire and to the

subsequent legislation that prohibited wooden constructions within the city borders. We document

a large increase in construction innovation and manufacturing, which generated positive knowledge

spillovers into technologically related sectors. To distinguish between the effects of the fire and the

construction policy, we contrast wood and non-wood construction and find that the gains are con-

centrated in the non-wood sector. Additionally, we examine the 1872 Great Boston Fire, where no

construction regulations were enacted, and find no effects on construction innovation and modest

gains in manufacturing. Our results suggest that public policy can be a powerful tool to direct tech-

nology in response to natural disasters, while also supporting economic growth.

Over the second half of the nineteenth century, Chicago witnessed momentous growth owing to its

central location within the US railway network. This unregulated sprawl left it exposed to fire haz-

ards. Estimates indicate that 100,000 people—out of a population of 300,000—were left homeless by

the 1871 Fire, which caused approximately 200 million dollars in damages (5 billion 2010$), or 670$

per inhabitant (Smith, 2020). Following the Fire, the Chicago municipal authority passed, in 1874,

an ordinance that prohibited the construction of wooden buildings within the city’s borders. In the

following decades, construction practices in Chicago introduced key innovations, including fireproof

materials, iron frames, and the first skyscrapers. The “Great Rebuilding” attracted many architects

and engineers, and Chicago emerged as the hub of innovative architecture (Condit, 1952).

To estimate the causal effects of the fire and the construction policy, we adopt a synthetic control

1
Acemoglu (2012) uses electric and internal-combustion cars as an example. At time t, internal-combustion cars have higher

quality and are thus preferred by consumers, but in t′ > t, consumer tastes will change, and they will buy electric cars.

Since private returns to innovation in internal combustion technology will be higher than in electric cars, market competition

underprovides innovation in the “clean” technology.
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approach, following Abadie and Vives-i Bastida (2022). The synthetic control method leverages in-

formation on untreated cities to construct a “synthetic” Chicago that serves as a counterfactual to

estimate the treatment effects. Compared to the more traditional difference-in-differences estimator,

the synthetic control method allows us to perform inference even if the treated group—Chicago—is

small. In addition, it is historically plausible that Chicago was not on the same trend as other cities

before the 1871 Fire, thus invalidating the identifying parallel trends assumption of the double dif-

ferences estimator. The synthetic Chicago, however, closely mimics the real Chicago before the Fire,

which suggests that it constitutes an appropriate policy counterfactual.
2

We find that the 1871 Fire had a positive and large impact on construction-related innovation in

Chicago. Ten years after the Fire, the number of construction patents issued to inventors living in

the Chicago metropolitan area was approximately twice that of the synthetic control. This wedge

widened over the following decades as construction-related innovation further increased. By 1900,

300 more construction patents were issued in Chicago relative to the synthetic control every year. To

estimate the knowledge spillovers of the increased construction innovation, we measure the techno-

logical similarity between construction and other technology classes.
3

Patenting in Chicago increased

relative to the synthetic control in classes technologically closer to construction, while we find mod-

est and statistically insignificant effects on more distant sectors. These different patenting trajectories

across sectors suggest that the response of innovation to the Fire is unlikely to be due to general eco-

nomic growth spurred by the rebuilding of Chicago. If this were the case, we would observe similar

increases in innovation across all technology classes, while we find a much stronger effect in innova-

tion in construction-related sectors.

Turning to broader indicators of economic activity, we use output, number of establishments, fixed

capital, and material and labor costs from manufacturing censuses, as digitized by Hornbeck and

Rotemberg (2024). The 1871 Fire impressed a major upward shift on construction manufacturing in

Cook County, where Chicago is located. Relative to the synthetic control, the number of construction

establishments and their output increased fivefold within a decade of the Fire. Fixed capital, material,

and labor costs also show substantial growth over the same period.

Finally, we examine the impact of the 1871 Fire on historical landmarks as an additional indicator of

2
Within the historical urban economics literature, the synthetic control method has been recently applied by Becker, Heblich

and Sturm (2021) to study how changes in public employment caused by the designation of Bonn as the capital of the

German Federal Republic after World War 2 impacted private-sector economic activity.

3
We adopt two measures of cross-sector technological similarity. First, we rank sectors by the share of patents we identify

as construction-related. Second, we adopt a text-based similarity measure that leverages document embeddings (Mikolov,

Sutskever, Chen, Corrado and Dean, 2013). The two approaches yield very similar results.
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innovation in construction technology. We assemble a geo-referenced dataset covering the universe

of sites listed in the National Register of Historic Places (Stutts, 2024). We compare the effect of the

Fire on architectural landmarks to all other sites. As discussed in Section I, the “Great Rebuilding”

ushered in an unprecedented agglomeration of architects and engineers in Chicago. We find that the

number of architecturally relevant landmarks in Chicago more than doubled relative to the synthetic

control by 1880 and further increased until 1900. The presence of these architectural sites, deemed

worthy of preservation, arguably proxies for the architectural innovations developed in those years.

By contrast, we find no statistically significant effects of the Fire on non-architectural landmarks.

How did the “industrial policy” intervention implemented by the Chicago municipality affect inno-

vation and economic activity? We answer in two ways.

First, we contrast the impact of the 1871 Chicago Fire on wood-related and non-wood-related inno-

vation and manufacturing. Since wood-related construction was forbidden within the city limits,

the construction policy plausibly channeled the demand shock generated by the Fire into non-wood-

related construction. Thus, one would expect that the Chicago Fire disproportionately affected in-

novation and manufacturing in non-wood construction. Our results corroborate this interpretation.

Non-wood construction innovation largely contributes to the increase in overall construction inno-

vation: by 1890, Chicago-based inventors obtained 90 more non-wood construction patents relative

to the synthetic control, whereas the increase in wood-related patenting was about 70% smaller. The

effects of the Chicago Fire on non-wood- vis-à-vis wood-related manufacturing indicators display sim-

ilar heterogeneity. The number of non-wood construction establishments and their production value

doubled in the ten years after the 1871 Fire. Fixed capital, material, and labor costs also display sub-

stantial increases. The effects on wood-related manufacturing construction are considerably smaller

and statistically insignificant. The results hold when controlling for total employment, further sug-

gesting that the increase in patenting and manufacturing is driven by the construction sector.

These patterns are consistent with our hypothesis that Chicago’s construction policy channeled re-

construction efforts into non-wood construction, thus propelling innovation in that area. In hind-

sight, non-wood construction would become the predominant technology and vastly outpace wood

construction. Non-wood buildings pose significantly fewer fire hazard concerns, permit denser ag-

glomeration, and dominate contemporary urban landscapes.

Second, we examine the impact of the 1872 Boston Fire on construction innovation and manufactur-

ing. In Boston, the Fire destroyed part of the central business district, causing 75 million dollars in

damages (1,8 billion 2010$), approximately equivalent to 11% of the total real estate value of the city,

or 300$ per inhabitant (Hornbeck and Keniston, 2017). Public opinion called for more restrictive leg-
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islation, similar to the one enacted in Chicago, but lobbying by real estate developers successfully

opposed any initiative in this direction. These different institutional constraints resulted in vastly

different reconstruction experiences. In Boston, post-Fire buildings largely resembled those that pre-

ceded them. Although the Boston and Chicago fires differed in proportions, they are still comparable

in many dimensions. They were both severe, targeted the central business districts, and hit economi-

cally dynamic and growing cities. We thus view the 1872 Boston Fire as an instructive counterfactual,

where no post-Fire construction policy is implemented.

Using a synthetic control framework, we find that the 1872 Boston Fire had no statistically signif-

icant effect on construction innovation. While patenting in Boston increased towards the end of

the century, construction-related patenting did not diverge from the synthetic control. On the other

hand, we do find an effect on manufacturing output and material costs, still witnessing the post-Fire

reconstruction–but these effects are more modest than in Chicago.

Altogether, the differences between wood and non-wood innovation and manufacturing, as well as

the results of the 1872 Boston Fire suggest that construction policies implemented in Chicago might

have played a key role in shaping the manufacturing and innovation dynamics it ignited. Thus, the

Great Chicago Fire provides a unique natural experiment to examine how public policy can direct

endogenous innovation responses to natural disasters and help mitigate their adverse effects. Our

results reveal substantial scope for policy interventions to sustain resilience-enhancing innovation in

the face of impending climate-related challenges.

Contributions to the Literature This paper contributes to three streams of literature. First, we contribute

to the literature on the direction of innovation. Pioneering studies by Habakkuk (1962) and Schmook-

ler (1966) and subsequent theoretical contributions by Acemoglu (2002, 2010) show that market size

and relative factor prices shape the direction of innovation and have received vast empirical support

(e.g., Popp, 2002; Hanlon, 2015; Andersson, Karadja and Prawitz, 2022; San, 2023). Recent papers doc-

ument that innovation reacts to natural disasters using cross-country variation (Miao and Popp, 2014),

as well as focusing on specific events, such as droughts (Moscona, 2021), climate change (Moscona

and Sastry, 2023), and epidemics (Berkes, Coluccia, Dossi and Squicciarini, 2025). Our contribution

here is twofold. First, we disentangle the effect of policy interventions from other, more general, post-

Fire consequences and provide novel evidence that policy intervention can successfully direct the

endogenous innovation response to natural disasters and mitigate their adverse consequences. Sec-

ond, we show that technological change responds to the damages caused by urban fires, a growing

concern amid contemporary global warming and overpopulation.

Second, we add to the growing literature on the economics of industrial policy (Juhász, Lane and
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Rodrik, 2023; Bartelme, Costinot, Donaldson and Rodriguez-Clare, 2025). Recent papers study the

efficacy of deliberate industrial policy interventions in sustaining industrialization in textiles (Juhász,

2018), shipbuilding (Kalouptsidi, 2018; Hanlon, 2020), heavy chemicals (Lane, 2025), among others, as

well as their effects on regional development (Garin and Rothbaum, 2024; Incoronato and Lattanzio,

2024; Mitrunen, 2025). Additionally, the study of innovation policy has gathered considerable atten-

tion (Bloom, Van Reenen and Williams, 2019), particularly in terms of public R&D (e.g., Azoulay,

Graff Zivin, Li and Sampat, 2019; Gross and Sampat, 2023; Moretti, Steinwender, Van Reenen and

Warren, 2025). We inform this literature by building on Acemoglu (2012), who argues that market

competition generally under-provides diversity in innovation. Our findings provide the first evi-

dence that innovation policy can decrease excess conformity and increase the amount of diversity in

technological change.

Third, we contribute to the literature on the economic effects of natural disasters. Existing papers

adopt either a cross-country perspective (Dell, Jones and Olken, 2012; Cattaneo and Peri, 2016; Kocornik-

Mina, McDermott, Michaels and Rauch, 2020) or focus on specific disasters, such as the 1871 Boston

Fire (Hornbeck, 2012), the 1906 San Francisco Earthquake (Ager, Eriksson, Hansen and Lønstrup,

2020), the Dust Bowl (Hornbeck, 2012), the 1927 Mississippi Flood (Hornbeck and Naidu, 2014),

and the 2009 Ketsana typhoon in Vietnam (Gröger and Zylberberg, 2016). In between these two ap-

proaches, Boustan, Kahn, Rhode and Yanguas (2020) construct a long series of natural disasters in the

United States to employ within-country identifying variation. Strobl (2011) and Mahajan and Yang

(2020) adopt a similar approach focusing on hurricanes, whereas Borgschulte, Molitor and Zou (2024)

study wildfires. We present mixed evidence on the effects of natural disasters per se, while shedding

light on the key role of policy intervention following such shocks.
4

Outline of the Paper The rest of the paper is organized as follows. Section I presents a description

of the Chicago and Boston fires. In Section II, we describe the data used in the analysis. Section III

discusses the causal research design, and in Section IV, we present the main results on the effects of

the 1871 Chicago Fire. Section V explores the underlying mechanisms and discusses the effect of the

1872 Boston Fire. Section VI concludes.

I HISTORICAL BACKGROUND

This section describes the events of the Great Chicago Fire of 1871, the construction policies that fol-

lowed it, and their consequences on construction practices and technological advancements. Then,

we present key information on the Great Boston Fire of 1872.

4
On the one hand, the 1872 Boston Fire did not significantly impact innovation and economic activity. Conversely, the 1871

Chicago Fire had substantial positive effects on both variables.
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I.A The Great Chicago Fire of 1871

The Fire started on October 8, 1871, and ravaged central Chicago for two days. Estimates indicate that

hundreds of individuals died, and close to 100,000 people were left homeless following the conflagra-

tion (Smith, 2020). More than 16,000 buildings, worth approximately 200 million dollars (or 5 billion

dollars at current prices), chiefly in the central business district, were destroyed.
5

The Fire devastated

infrastructure, including water works, railroads, and private buildings, such as hotels and theaters.

Two factors, in particular, determined the devastating impact of the Fire. First, Chicago had been

massively growing in the decade preceding the Fire through the construction of wooden slums which

spread from the city’s outskirts deep into the center (Rosen, 1986). Miller (1996) documents that the

lack of regulatory oversight was instrumental in creating fire hazards in the central portion of the

city. Second, the Fire Department proved ineffective in containing the Fire (Smith, 2020). Various

alarms raised by the citizens failed to be communicated to the fire station. Firemen, who were badly

equipped, faced logistical problems as the chaos in the streets obstructed their intervention.

I.B Construction Policy After the Fire

The pre-Fire growth of the city of Chicago was not accompanied by urban policy oversight. In 1871,

only one piece of legislation prevented the construction of wooden buildings in a small area of the

city center without affecting existing housing stock (Rosen, 1986). Soon after the 1871 Fire, a debate

arose around the necessity to pass more stringent legislation on new constructions. Joseph Medill,

elected in 1871 shortly after the Fire, enacted minor provisions affecting relatively small portions of

the new immigrant neighborhoods. Only in 1874, after a second—minor—Fire threatened the center,

the National Board of Fire Underwriters (now American Insurance Association), an organization es-

tablished in 1866 by insurance companies to reduce fire losses and promote fire safety, successfully

pushed for more comprehensive legislation to prevent further disasters (Critchell, 1909).

The first provisions enacted by the Medill administration shortly after the 1871 Fire allowed owners in

each block to vote and decide to outlaw buildings made of inflammable materials. The ordinance is-

sued after the 1874 fire, by contrast, prescribed that only bricks and non-combustible materials would

be used in new buildings. Frame buildings, the predominant construction technology in Chicago,

were prohibited except for very small units far from the city center. Warehouses and lumber yards

were removed from all built-up areas within the limits of Chicago. Moreover, the fire department

was reorganized and furnished with new equipment (Smith, 2020). The National Board of Fire Un-

derwriters served as guarantor of the implementation of the legislation enacted by the municipal

5
According to the 1870 census, the population of the inner Chicago area was approximately 300,000. The contemporary 200

million 1871$ figure equaled approximately 2.6% of the US GDP, which, today, would imply 700–800 billion 2010$ damages.
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administration. While direct evidence on the enforcement of the ordinance is not available, the Board

received a large number of requests to amend the law for specific wooden buildings, all of which were

rejected by the Council (Mayer, Wade, Holt and Pyle, 1969).
6

I.C Construction Practices and Innovations after the Fire

Despite initial fear that the new restrictive ordinance would hamper the city’s redevelopment, re-

building efforts were swift (Rosen, 1986). Compared to the pre-Fire buildings, the newly erected

constructions had thicker walls, deeper foundations made of mortar and brick, often encapsulated

elevators, and featured better fire escapes. They were also larger in area and taller, thus resulting in

a larger internal space. The 1871 Fire ultimately ushered in substantial innovations in building tech-

nology and design, attracting many architects and engineers who would make Chicago a global hub

for innovation in construction technology—a legacy that persists to this day (Wermiel, 1996).

The first breakthrough innovations were in fireproof construction. While fireproof techniques had

been developed long before the Fire, their adoption and further advancement drastically accelerated

after 1871. George H. Johnson, a designer who moved to Chicago in 1871, patented a hollow-tile

system for fireproof floors (Sawislak, 1995). The application of terra-cotta tile to cover exposed iron

parts became widespread. Being heat resistant, the tile remained intact in the heat of direct flames,

thus providing a key step toward the design of fireproof buildings (Peters, 1991).

Under the ordinance’s provisions, new constructions had to rely on an iron frame instead of a wooden

inner structure. As land prices in the central business district area soared, developers sought to erect

increasingly tall structures (Condit, 1952). Eventually, the first skyscrapers in history emerged in

Chicago. In 1895, a writer in Engineering News cited in Randall (1949) reports that “The construction

of enormously high office buildings [...] originated in Chicago, in its practical application, at least, and

that city has at the present time buildings of steel skeleton type than have all other American cities

together.” The development of skyscrapers required substantial innovation in iron frames to reduce

their weight and improve their stability. Additionally, the development of tall buildings promoted

the fast adoption of the elevator.
7

The “Great Rebuilding” attracted many architects, engineers, and designers. Historians refer to this

newly formed community as the “Chicago School Architecture” (Fitch, 1948). The guiding principles

of this heterogeneous movement–which embraced structural innovations such as steel-frame con-

struction and improved wind resistance while also stressing the importance of spacious interiors and

6
The requests appear in the Proceedings of the Common Council of the City of Chicago in 1874, 1875, and 1876.

7
The Home Insurance Building, commonly considered the first skyscraper in the world due to its steel-framed structure,

was inaugurated in Chicago in 1885. It had four elevators serving its ten floors.
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abundant light (as in Holabird and Roche’s 1889 Tacoma building design)–reverberated in European

Modernism and contributed to making Chicago the global hub of innovative architecture (Condit,

1952).

I.D The Great Boston Fire of 1872

The Fire in Boston broke out on November 6, 1872. It centered in the wholesale business district and

destroyed 776 buildings, causing approximately $75 million in damages, or 11% of the total assessed

value of Boston real estate stock (Hornbeck and Keniston, 2017). Post-fire growth was fueled by strong

private demand and resulted in growing land prices and capital inflows.

As in Chicago, public opinion called for stricter building regulations. Facing lobbying by powerful

interest groups, however, the municipal authority could only enact weak building legislation, which

was ultimately repealed in 1873 (Rosen, 1986).
8

Thus, unlike in Chicago, the reconstruction in Boston

was not overseen by the municipal authority and was largely privately managed.

Partly because of the different policy constraints faced by developers in Boston and Chicago, post-fire

buildings in Boston largely resembled those that preceded them. Fireproof techniques were applied

to traditional materials, and the construction techniques remained largely unchanged. Rosen (1986)

argues that this approach was rooted in the structural differences between the two cities. Boston had

already undergone a rationalization of land use before the Fire, and consequently, its urban infras-

tructure was less amenable to dramatic improvement. As a result, Boston’s post-fire reconstruction

produced safer and better fireproofed buildings, yet largely unchanged in construction methods and

architectural style.

II DATA

This section presents the data underlying the analysis and our procedures for compiling the final

datasets. First, we present a new dataset of patents issued between 1853 and 1900. Then, we discuss

how we use the manufacturing and population censuses and describe a newly compiled dataset of

geo-coded historical US landmarks.

8
In Chicago, landowners and industrialists were advocating for tighter regulations, whereas the less affluent feared that

these regulations would force them out of the city center. On the other hand, in Boston, landowners advocated against

tighter regulations because the city had already undergone extensive redevelopment before the fire (Rosen, 1986). These

different positions partly explain the different provisions enacted in the two cities.
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II.A Patent Data

We measure innovation activity using patents, in line with a long tradition in economics (Griliches,

1990). We collect the text of the universe of patents issued in the United States between 1853 and

1900 from Google Patents, following the approach of Moser and San (2020).
9

Using a state-of-the-art

large language model (GPT 4o-mini), we extract, directly from the patent’s text, data on the inven-

tors’ name, address, location, the filing and issuance date of the patent, and potential firm assignee.

We augment this information with data on the patent CPC technology classes provided by Google

Patents. Furthermore, using a commercial software (Google Maps API), we geo-code the addresses

extracted from the patent documents to precise latitude and longitude coordinates.
10

We identify construction-related patents using a simple dictionary-based approach. We label a patent

as “construction” if it mentions at least five times one or more construction-related words (in a sam-

ple of 30 words). The list of construction-related words is provided in Table D.1. Thus, patents that

the USPTO did not assign to the “Fixed Construction” technology class may still be classified as con-

struction. We adopt a similar heuristic method to identify “wood-related” and “non-wood-related”

construction patents. In particular, we label a patent as “wood-related” (resp. “non-wood-related”) if:

(i) it is a “construction” patent, and (ii) it mentions at least one wood-related (resp. non-wood-related)

word within a pre-designed dictionary. On average, Table I shows that 22.9% of patents are flagged

as related to construction. Of those, 11.7% are related to wood-related construction, while 22.3% are

identified as non-wood-related construction patents.

To quantify the technological spillovers of the Chicago Fire on innovation outside of construction, we

measure the technological similarity between construction-related and other patents by technology

class. We propose two alternative procedures. First, we rank CPC classes by the share of patents in

each class, which are also construction patents. Second, we employ the doc2vecdocument embedding

model, a natural language processing technique (Mikolov et al., 2013). The model is trained on a 20%

random sample of the universe of patents, allowing us to represent each patent as a real-valued vector.

For each non-construction patent, we compute the average cosine similarity with all construction

patents and take the average within each technology class. Thus, the ranking returns a technology

class-level order of similarity between construction and non-construction patents. The two methods

return the same ranking: as expected, patents in CPC class E (“Fixed Construction”) technology class

9
The United States Patent and Trademark Office (USPTO) was established in 1836. While data on patents issued before 1853

exist, patenting was rare and unusable for our empirical analysis.

10
We compare our newly constructed data to Sarada, Andrews and Ziebarth (2019) and Petralia, Balland and Rigby (2016),

which cover a partially overlapping time period but do not contain information on the text of patent applications. Our data

coverage exceeds 90% of both datasets for the years when they overlap (see Appendix A for details).
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are the most similar to the pool of construction patents, followed by classes G (“Physics”) and B

(“Performing Operations; Transports”). By contrast, patents in classes C (“Chemistry; Metallurgy”),

H (“Electricity”), and A (“Human Necessities”) are the least similar to construction patents.

Using the coordinates assigned to the location data extracted from patent documents, we assign

patents to the locations listed in the Census Place Project (CPP), a directory of geo-coded locations

listed in the US census (Berkes, Karger and Nencka, 2023). Specifically, we assign a patent to the clos-

est CPP location provided that at least one of the inventors resides within 20 kilometers (12.4 miles).
11

The results are not sensitive to alternative thresholds between five and thirty kilometers.

II.B Manufacture Census

We use county-by-industry data from the 1860, 1870, and 1880 Censuses of Manufacturing digitized

by Hornbeck and Rotemberg (2024). The data contain information on production value, number of

establishments, value of fixed capital, and labor and material costs. Since more disaggregated data—

e.g., at the city level—are not publicly available, the analysis is run at the county level. We thus

assume that the Chicago Fire affects the entire Cook County (IL), where Chicago is located. Similarly,

the Great Boston Fire impacted Suffolk County (MA), where Boston is located.
12

Since the data is at

the decade level, we use 1880 as the only post-treatment period, whereas 1860 and 1870 constitute the

pre-treatment window.

Table I lists selected statistics for the Manufacturing Census data. Counties have an average of ten

establishments, although this figure conceals substantial heterogeneity. Cook County, where Chicago

is located, and Suffolk County, where Boston is located, host more than 1,000 firms, placing them in

the top percentile of the overall distribution. Other economic performance indicators, such as the

total production value, display similar degrees of heterogeneity.

We consider the industries labeled as “construction,” “construction materials,” and “furniture” as

related to construction manufacturing. Our baseline results remain unchanged if we only include

the “construction” industry in the treatment group. In turn, we identify as wood-related industries

those labeled as “carpentering,” “lumber, planed,” “lumber, sawed,” “saw,” “wood products, other,”

“wood, turned and carved,” and “wooden ware.” Finally, non-wood-related industries are “brick,

stone, and tile,” “lime and cement,” and “marble and stone work.”

11
We assign patents with multiple inventors to each inventor’s CPP location. Results remain unchanged if we assign equal

shares to each inventor’s location.

12
This assumption is reasonable, for Chicago’s and Boston’s metropolitan areas account for more than 90% of the population

of Cook and Suffolk Counties in 1870.
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II.C Population Census

We use individual-level data from decennial population censuses and location data from the CPP

(Ruggles, Fitch, Goeken, Hacker, Nelson, Roberts, Schouweiler and Sobek, 2021; Berkes et al., 2023).

The CPP assigns precise latitude and longitude coordinates to the large majority of individuals in the

population census, which lacks standardized and comprehensive location data beyond the county of

residence. We use these two sources to produce two distinct datasets.

First, we tabulate data from the 1870 population census at the CPP-location level. For each location,

we compute a set of demographic characteristics listed in Table I (Panels B–D). Among those, we

choose the set of variables we use to construct the synthetic control units, as discussed in detail in the

next section.

Second, we construct an individual-level dataset from the 1870 and 1880 censuses. We consider

the universe of the working-age population—i.e., above 15 years old—with a valid occupational re-

sponse. We identify as a construction worker any individual listing an occupation where at least

50% of the employed are listed in the “Construction” industry in the federal census. Among those,

“Carpenters” are identified as wood-related construction workers, whereas we assign “Brickmasons,

stonemasons, and tile setters,” “Cement and concrete finishers,” and “Plasterers” to non-wood-related

construction. On average, 1.9% of the workforce is employed in construction, 1.1% is employed in

wood-related construction jobs, and 0.3% is assigned to non-wood-related construction occupations.

II.D Historical Landmarks

To assess the cultural and architectural legacy of the Chicago Fire, we assemble data on significant

buildings erected in the metropolitan areas in our sample between 1850 and 1900. We start from

places listed in the “National Register of Historic Places” (Stutts, 2024). The National Register is the

United States’ official list of historically significant places. It was established under the 1966 National

Historic Preservation Act and is currently maintained by the National Park Service. The Register

records buildings, districts, sites, and, more generally, places deemed worthy of preservation.

The Register lists 99,199 sites.
13

It indicates the state, county, and city where each entry is located,

along with the type of record (e.g., “district” or “building”), the area of significance (e.g., “architec-

ture” or “industry”), and other information less relevant for the analysis. We first geo-code each

entry and assign it to the closest metropolitan area within 20 kilometers (12.4 miles). We success-

fully geo-coded 98% of the Register. We find that 24,673 sites (24.8% of the sample) are assigned to a

metropolitan area in our sample. Second, we augment the dataset with information on the construc-

13
We accessed the Register in October 2024, when the last update was dated August 2024.
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tion year of the landmarks. To do so, we individually search for each entry on Wikipedia and parse

the text to retrieve the construction year. We correctly impute a construction year to approximately

80% of the entries.

The final sample of historical landmarks erected in one of the metropolitan areas in the sample, along

with information on their construction year, comprises 19,110 entries. In the analysis, we concentrate

on the subset of 5,907 landmarks erected between 1850 and 1900. Additionally, we focus on 3,792

“buildings” entries, thus discarding residual observations listed as “district,” “site,” and “object.”

Moreover, we distinguish units based on their area of significance: “architecture” and all others.

II.E Construction of the Samples

The first sample we construct is a city-level yearly panel dataset with data on innovation activity be-

tween 1853 and 1900. The data covers the largest metropolitan areas in the United States in 1870. To

construct a metropolitan area, we first extract all CPP locations with at least 20,000 individuals in the

1870 census.
14

There are 84 such places, each corresponding to a major city. Then, we map all other

minor towns to the closest city with a population above 20,000, provided their distance does not ex-

ceed 20 kilometers (12.4 miles).
15

The results remain qualitatively unchanged for thresholds between

5 and 30 kilometers. The resulting dataset thus comprises 84 “metropolitan areas” which include a

single major town above 20,000 inhabitants and all other minor towns within 20 kilometers from its

center.
16

For each metropolitan area, we tabulate demographic characteristics from the 1870 census—

the last census before the Fires—and compute the number of patents issued in each metropolitan area

between 1853 and 1900. Figure I displays the geographic distribution of all metropolitan areas thus

constructed.

The second sample is constructed at the county level and comprises all counties where our metropoli-

tan areas are located. There are 76 such counties. The difference between the number of counties (76)

and metropolitan areas (84) is due to the fact that some counties encompass more than one metropoli-

tan area. These data are available at a decennial frequency between 1860 and 1880. For each county, we

observe data from the Census of Manufactures and information extracted from the 1870 population

census and mapped onto 1870 county borders. Data from the 1860 and 1880 Census of Manufactures

14
Our results remain robust when we apply alternative population thresholds between 5,000 and 50,000 to construct the donor

metropolitan area pool. We focus on relatively large cities primarily because the synthetic control approach applies a zero

weight to small towns when constructing the synthetic control, as they are too different from the treated cities.

15
Figure C.2 provides a graphical description of the agglutination procedure that forms the “Chicago” metropolitan area

within Cook County (IL).

16
The full list of cities above 20,000 inhabitants, as well as all minor cities within their metropolitan areas, is provided in

Table D.2.
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are cross-walked to county borders in 1870, following the methodology described by Eckert, Gvirtz,

Liang and Peters (2020). We observe the number of establishments, production value, fixed capital,

material costs, and labor costs in construction, wood-related manufacturing, and non-wood-related

manufacturing.

Third, we complement the individual-level data extracted from the 1870 and 1880 population cen-

suses with the intergenerational links produced by Abramitzky, Boustan, Eriksson, Pérez and Rashid

(2020). We link the 1870 entries to their records from the 1880 census so that, for each individual,

we observe a set of fixed individual characteristics and time-varying outcomes—specifically their in-

dustry and occupation—at two points in time, 1870 and 1880. Because we seek to measure how the

Chicago and Boston fires affected the probability of taking jobs in construction, we restrict the sam-

ple to include individuals between 16 and 70 years old with a valid occupational response in either

census, who were not working in construction-related occupations in 1870.

III RESEARCH DESIGN

Our empirical analysis seeks to evaluate the impact of the 1871 Fire on innovation and manufacturing

activities. The key challenge to disentangle its effects is that other correlated shocks in Chicago may

affect the variables of interest. A natural approach would thus be to compare Chicago with other cities

in a difference-in-differences setting. This strategy, however, relies on the hypothesis that without

the Fire, Chicago and the other cities would have followed similar trajectories. This parallel trends

assumption is unlikely to be verified. Before the Fire, Chicago was the fastest-growing large city in

the United States and a central hub of the expanding railway network (Miller, 1996). It thus seems

plausible that Chicago was not on the same trend as other cities before 1871. Additionally, inference

in the double differences framework would be infeasible since we only have a single treated unit.

To circumvent this issue and construct an appropriate counterfactual for post-Fire Chicago, we adopt

the synthetic control method (Abadie and Gardeazabal, 2003; Abadie, Diamond and Hainmueller,

2010). The core idea of synthetic controls is to employ information on treated and control units to

construct a “synthetic” control that “resembles” the treated unit and can serve as a counterfactual.

The estimated causal effect is, thus, the difference between the treated and synthetic control outcome

values after the treatment period.

Formally, suppose we observe j ∈ {1, . . . , J + 1} units over time t ∈ {1, . . . , T}. In our analysis, j

denotes a metropolitan area or a county, and t is a year or a decade. Suppose j = 1 denotes Chicago.

Let YN
jt be the potential outcome of city j in year t absent the Fire, and let Y I

jt be the observed outcome

of city j in all post-Fire periods t = 1871, . . . , T. Finally, let Yjt denote the observed outcome. Since, all
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j ̸= 1 are untreated cities, YN
jt = Yjt for all t. The estimand is thus τt ≡ Y I

1t − YN
1t = Y1t − YN

1t , i.e., the

treatment effect of the Fire on Chicago. A synthetic control estimator approximates the counterfactual

and unobserved term YN
1t with a weighted average of the outcome of all untreated units so that the

estimator reads out as follows:

τ̂t = Y1t −
J+1

∑
j=2

ωjYjt, (1)

where the weights ωj ∈ {ωj′}J+1
j′=2 capture the contribution of each “donor” unit to the estimate of

the counterfactual. To compute the weights, the standard approach is to maximize the pre-treatment

similarity between the treated and the control units. Formally, let Xj = (X1j, . . . , Xkj)
′

be a vector of

pre-treatment characteristics of unit j, and let X0 = [X2, . . . , XJ+1] collect all such characteristics across

donor units. The vector Xj includes both time-invariant characteristics and pre-intervention values of

the outcome variable. Following Abadie and Vives-i Bastida (2022), a simple data-driven approach

to find the weighting scheme Ω = (ω∗
2 , . . . , ω∗

J+1)
′

is to minimize the following expression:

||X1 − X0Ω|| =
[

k

∑
h=1

νh
(
Xh1 − ω2Xh2 − · · · − ωJ+1XhJ+1

)2

]1/2

, (2)

where the non-negative weights {νh}k
h=1 can be used either to standardize the predictors or to reflect

their importance for the in-sample fit. In our application, following Abadie et al. (2010), we simply

standardize the predictors.

Abadie et al. (2010) prove that the magnitude of the bias E[τt − τ̂t] is bounded and that it increases

in (i) the ratio between transitory shocks and the number of pre-intervention periods, (ii) the number

of units in the donor pool, and (iii) the number of potential unobserved factors. Abadie and Vives-i

Bastida (2022) highlight, among other suggestions, that (i) a long pre-intervention time series is crucial

to assess the capacity of the synthetic control to reproduce the trajectory of the treated unit, (ii) a

sensible choice of co-variates is fundamental to ensure minimize the impact of unobserved correlated

shocks, (iii) pre-intervention fit of the synthetic control is crucial for credible causal inference, and

(iv) out-of-sample validation of the synthetic control is useful to validate it against over-fitting. In

our application, we closely follow these recommendations.

We apply the synthetic control methodology to estimate the impact of the Great Chicago (and Boston)

Fires on various outcomes. The level of observation is either a metropolitan area or a county. The

sample includes 84 metropolitan areas—Chicago, Boston, and 82 untreated cities—or the counties

where these cities are located. Units are observed either at a yearly or decennial frequency, depending

on data constraints, as we explained in Section II. Throughout the analyses, we use the same set of

balancing variables. These are the pre-treatment outcome variables, as well as population, the share of
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men, the share of literate, the share of Blacks, and the employment shares by occupation and industry

in 1870. We choose these variables to ensure that the synthetic control reproduces Chicago’s—and

Boston’s—demographic and occupational composition. All balancing variables are constructed from

the population census except for the pre-treatment outcome values. Table D.3 reports the non-zero

weights that determine the influence of each donor city in the synthetic control unit. We exclude

Boston and Chicago from the set of donor cities when constructing the synthetic control for Chicago

and Boston, respectively.

In the spirit of the synthetic control approach, Table II compares observed characteristics in 1870

in Chicago (column 1), other cities (columns 2–4), and the synthetic Chicago (columns 5–7).
17

As

expected, Chicago is substantially different from the average US city: it is richer, presents a larger

share of Whites, and has a higher share of foreign-born. It also differs in terms of the occupational

structure—most notably, it displays a higher share of skilled manufacturing workers—and industry

composition—with lower shares of agricultural and textile workers and more trade and transporta-

tion workers. These differences reflect historical evidence depicting Chicago as a transportation hub

within the expanding railway network. Differences between Chicago and the synthetic control are

much less pronounced, often statistically insignificant, and always considerably smaller in magni-

tude compared to the crude average of untreated cities. Overall, Table II provides evidence support-

ing the validity of the synthetic control research design. In the remainder of the paper, we evaluate

the goodness-of-fit of the synthetic unit for the various outcomes of interest.

In robustness checks, we employ the synthetic difference-in-differences (SDiD) method developed by

Arkhangelsky, Athey, Hirshberg, Imbens and Wager (2021). The SDiD estimator nests the intuition of

standard difference-in-differences (DiD) and synthetic control frameworks to obtain an estimator that

outperforms both in terms of bias mitigation and efficiency. The SDiD estimator can be thought of as

a local difference-in-differences estimator, which assigns larger weights to control units that resemble

the treated unit(s) along a set of specified characteristics. We compute bootstrap standard errors to

assess the statistical significance of the estimates. Appendix B.II provides the analytical details on the

SDiD framework.

IV MAIN RESULTS

This section presents the main results of the paper. We organize it into four parts. First, we explore

the effect of the Chicago Fire on innovation in construction. Then, we look at how the effects of

17
To construct the synthetic Chicago, we use the weights obtained by applying the synthetic control approach on construction

patenting, as in Section IV.A. The balancing variables thus comprise the baseline covariates constructed from the census, as

well as the lagged values of construction patenting. Table D.4 replicates the balance table for Boston.
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construction innovation spilled over into innovative activities in other industries. Third, we explore

the broader consequences of the Fire on the manufacturing sector. Finally, using data on historically

significant landmarks, we document the historical and cultural legacy of the Fire.

IV.A The Great Chicago Fire and Innovations in Construction Technology

The central objective of this paper is to understand how innovation responded to the 1871 Fire shock,

trying to shed light on the role of policy interventions. To quantify this effect, we first focus on

construction-related technological change, as measured by patents. In particular, we implement a

synthetic control design that leverages yearly information on construction-related patenting for each

metropolitan area.

Figure II reports the baseline estimates. In Figure IIa, we display the number of construction-related

patents in Chicago (solid red line) and the synthetic control (dashed grey line). The dashed black line

marks the timing of the 1871 Fire. Trends in construction-related innovation in the actual and syn-

thetic Chicago units are remarkably similar before 1871. This pattern is a direct consequence of the

synthetic control method, which constructs the counterfactual to mimic the pre-intervention trends

in the treated unit. After the Fire, however, trends in the treated and control units diverge sharply.

Construction-related innovation in Chicago began to increase three to four years after the Fire, ex-

hibiting substantial growth in the following decades. Innovation in the synthetic control unit displays

only moderate increases. Quantitatively, the treated and control units both produced approximately

20 construction-related patents in 1870. Fifteen years later, this Figure increased to almost 300 patents

in Chicago and 80 in the synthetic control. The remarkable and growing divergence indicates that the

Fire had a positive and large effect on construction innovation in Chicago.

Figure IIb reproduces the same graph by reporting the difference in construction-related patents be-

tween Chicago and synthetic Chicago. As previously noted, the two units are on the same trend

before the Fire and drastically diverge after 1871 and, especially, after 1874. This seemingly “lagged”

response may reflect at least three factors. First, the timing depends on the year when each patent

is issued. Ideally, the filing year would be more appropriate to reflect the supply-side response of

inventors to the Fire. However, this information is missing from many patent documents before the

1880s. The delay between the filing and granting year is thus one factor influencing the seemingly

lagged response of construction innovation to the Fire. Second, the construction policy that prohib-

ited new wooden buildings was promulgated in 1874 after a second, minor fire threatened the city

center. Third, the reconstruction activity was halted by the bankruptcy of Jay Cooke and Company, a

major local bank, and the 1873 national downturn, which limited capital inflows (Miller, 1996). The

timing of the divergence between Chicago and synthetic Chicago is thus consistent with the nature
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of the data and the historical circumstances.

In Figure IIc, we report the results of a standard analysis to facilitate inference using the synthetic

control estimates. Specifically, we assign the treatment status to each of the 84 metropolitan areas

in the sample and compute the difference between construction-related patenting in that city and

its associated synthetic control. This difference is an estimate of the treatment effect for Chicago, as

shown in equation (1), whereas other cities constitute “placebo” units. The underlying intuition is

that we want to gauge the probability that the estimated impact of the Fire in Chicago was random.

The Figure highlights the estimates for Chicago in red, while all other metropolitan areas are shown

in gray. The Figure shows that the treatment response in Chicago far exceeds all other cities. To put

it differently, if we pretended that the 1871 Fire had happened in any other city, we would never

estimate a response of construction-related innovation as big as it is in Chicago.

One final way to evaluate the impact of the Great Chicago Fire on construction-related innovation is to

look at the distribution of the pre-post Fire root mean squared prediction error (RMSPE) ratios across

metropolitan areas.
18

Intuitively, the ratio between post- and pre-intervention RMSPE quantifies the

quality of the fit of the synthetic control after the treatment compared to the quality of the fit before

the intervention. Figure IId reports the distribution of the post-to-pre-intervention RMSPE ratios

across metropolitan areas. Chicago is highlighted in red. The post-to-pre-Fire RMSPE ratio in Chicago

stands out compared to all 83 other cities. If we were to assign the Great Chicago Fire to each city, the

probability of observing a post-to-pre-Fire RMSPE as large as Chicago’s would be 1/84 ≈ 0.01.

Patents vary extensively in terms of their economic significance. The standard practice to account for

this heterogeneity is to look at citations. This approach is infeasible in historical settings because the

inclusion of citations to prior art became compulsory only after World War II (Andrews, 2021). To

address this limitation, we adopt the novelty measure developed by Kelly, Papanikolaou, Seru and

Taddy (2021), which measures novelty as the excess text similarity of each patent with future patents

relative to previous patents. In Figure C.3, we repeat the analysis focusing on patents in the top

20% of the novelty measure distribution. Figure C.3a focuses on construction patents and indicates

that high-impact construction innovation in Chicago sharply diverged from the synthetic control after

1871. This pattern indicates that the positive effect of the Fire on construction innovation is not driven

18
Abadie et al. (2010) define Rj(t1, t2) to be the mean squared prediction error for unit j between two periods 0 ≤ · · · ≤ t1 ≤

t2 ≤ T as

Rj(t1, t2) ≡
[

1
t2 − t1 + 1

t2

∑
t=t1

(
Yjt − ŶN

jt

)2
]1/2

,

where ŶN
jt is the outcome of the synthetic control as defined in the second term of equation (1). Then, the ratio of post-to-

pre-intervention RMSPE for unit j is given by rj = Rj(T0 + 1, T)/(1 + Rj(1, T0)).
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by low-quality innovation.

In Figure C.4, we report the event-study synthetic difference-in-differences estimated effects of the

Great Chicago Fire on construction innovation. We find no statistically significant difference in con-

struction patenting before 1871 between Chicago and the synthetic control group. After 1871, and

particularly after the 1874 municipality ordinance, the SDiD estimates replicate the synthetic control

treatment effects, indicating a large and growing wedge in construction patenting in Chicago relative

to the synthetic control.

Altogether, these results suggest that the Fire triggered an increase in construction-related innovation

as a response to both the need for reconstruction in conjunction with policies pushing for the use of

fireproof and innovative designs and materials.

IV.B Knowledge Spillovers

The previous analysis provides strong evidence that the 1871 Fire propelled a self-sustaining wave

of innovation in construction in Chicago that spanned at least three decades after the Fire. In this

section, we examine how the boom in construction innovation spilled over to other fields depending

on their technological similarity to construction. This exercise is informative along two dimensions.

First, it allows us to gauge the relevance of knowledge spillovers in sustaining subsequent innovation.

Second, we can use fields other than construction to construct a “within-Chicago” counterfactual. It

is, in fact, possible to interpret the estimated increase in construction-related innovation after 1871 as

a collateral consequence of unusual economic growth spurred by the Fire. By comparing the pattern

of innovation activity across sectors within Chicago, one can net out the aggregate impact of the Fire

and disentangle its effect on construction.

Our text-based measure of “construction” patents does not exploit technology class information.

Thus, construction patents are scattered across CPC technology classes. Our main measure of technology-

class-level similarity to construction is the share of patents in a given CPC technology class flagged as

“construction” by the text-based algorithm. Then, we rank classes according to this share and divide

them into terciles such that the bottom tercile comprises classes with the least share of construction

patents, and the top one collects those with the largest share. As a robustness exercise, we also com-

pute the average text-based similarity between non-construction and construction patents by CPC

technology class using a document embedding model, which produces the same ranking as the main

classifier.

Following the previous analysis, we estimate the treatment effects of the Fire, using as the outcome

variable the number of non-construction patents by tercile of similarity with construction patents.
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Figure III reports the results of this exercise by showing the difference between the number of patents

in Chicago and those in the synthetic control. The solid line reports the estimates for patents in the

technology classes in the top tercile of similarity with construction patents, the dashed line refers

to the mid tercile, and the dotted line displays the estimates for the bottom tercile of least similar

technology classes. In all cases, the synthetic control closely follows patenting activity in Chicago

before the Fire, indicating that it plausibly constitutes a good counterfactual for what would have

happened in Chicago after 1871 if the Fire had not happened.

However, the trajectories sharply diverge after 1871. The number of non-construction patents belong-

ing to technology classes most similar to construction patents sharply increased over the two decades

following the Fire. By contrast, innovation in the middle and bottom terciles displayed a much more

modest increase in the mid-1880s, and there is no evidence of further growth after that. Figure III

thus documents considerable knowledge spillovers of innovation in construction onto more simi-

lar technology classes and limited evidence that these spillovers benefited more distant fields in the

technology space.

Showing different trajectories of patenting across terciles of similarity to construction innovation, this

exercise suggests that the response of construction innovation to the Fire is unlikely to be due to

general economic growth spurred by the rebuilding of Chicago. If this were the case, one would

expect similar increases in innovation in other technology classes. Looking at the universe of non-

construction patents would not provide a convincing placebo because knowledge spillovers (in sec-

tors technologically closer to construction) would contaminate the aggregate response of non-construction

innovation to the Fire. Figure III, instead, clearly indicates that patenting in technologies distant from

construction did not significantly increase after the Fire.
19

IV.C The Impact of the Fire on Construction Manufacturing

Patents provide a direct way to quantify the economic response to the Great Chicago Fire at a high time

frequency. In this section, we examine the broader economic implications, focusing on the manufac-

turing sector.
20

Specifically, we compute the total number of establishments, the value of production,

19
To corroborate our interpretation of patenting dynamics after 1871 as reflecting the effects of the Fire and not only increasing

population, in Table D.5, we normalize patenting activity in construction by total employment. We do not use this as the

baseline metric because (i) employment is only available at decennial census frequency, and (ii) the resulting series displays

considerable volatility. Despite these caveats, Figure C.5a in Figure C.5 clearly displays that construction innovation per

capita increased after 1871 in Chicago relative to the synthetic control.

20
The two main disadvantages relative to the previous analysis are: (i) manufacturing data are from decennial censuses, as

opposed to yearly data from patents, and (ii) they are county-level tabulations instead of the city-level data constructed

from patents.
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the value of installed fixed capital, and labor and material costs of establishments based in one of the

76 counties where the original 84 metropolitan areas are located.

Table III reports the results. Each county is observed in 1860, 1870, and 1880. The 1880 census is thus

the only post-Fire observation. Each row reports the difference between the column variable in Cook

County, IL—where Chicago is located—and the synthetic Cook County. As in the city-level analysis,

the synthetic control closely matches trends in each outcome variable before 1880. In particular, the

difference between Cook County and the synthetic control never exceeds 1% of the value of the pre-

treatment outcome in Cook County except for labor costs in 1860 (column 5), where the difference

is approximately 7% of the pre-Fire average. Even when the unit of analysis is less granular, the

synthetic control approach allows us to construct a credible counterfactual for the treated unit.
21

Construction manufacturing in Cook County increases after the Fire compared to the counterfactual

in all specifications. The estimate is sizable: relative to the synthetic control, the number of firms in

construction increases by four times relative to the pre-treatment value (column 1), production value

increases six-fold (column 2), the value of fixed capital by four times (column 3), and the cost of mate-

rials and labor respectively increase by nine (column 4) and four times (column 5). It is plausible that

we find these large effects because the outcomes are measured in 1880, when the “Great Rebuilding”

was in full swing. This notwithstanding, the shift towards a more construction-centered production

structure appears unequivocal.

Figure C.6 reports the distribution of ratios of post-to-pre RMSPE ratios in the 76 counties and high-

lights the value for Cook County in red. For all outcome variables except labor costs, the estimated

impact of the Fire on construction manufacturing stands out sharply. There is a 1% probability of

observing a post-to-pre RMSPE ratio as large as Cook County’s when assigning the Fire at random

across counties when looking at production value, fixed capital, and material costs, and a 5% proba-

bility when looking at the number of establishments.

How does the effect of the Fire on construction compare to other manufacturing sectors? In Fig-

ure C.7, we report the estimated treatment effect—i.e., the difference between Chicago and the syn-

thetic control—across the various outcomes compiled from the manufacturing census and industries.

Our estimates imply that construction manufacturing was the fastest or second-fastest-growing sec-

tor after the Fire. Only food production outpaced construction in terms of production value, largely

owing to Chicago’s position within the US railway network and growing grain exports (e.g. Heblich,

Redding and Zylberberg, 2025). Besides food processing, however, construction manufacturing dis-

21
This finding is not surprising and, as noted by Abadie and Vives-i Bastida (2022), synthetic control methods work best when

the level of aggregation of the outcome variable reduces high-frequency volatility.
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plays the largest growth across the five indicators of economic activity. This pattern corroborates our

hypothesis that the Fire reshaped the structure of economic activity over the years of the “Great Re-

building.” Additionally, in Panel A of Table D.5, we report the estimated effects when normalizing the

outcomes by total employment over time and find qualitatively similar effects, thus confirming that

the patterns we uncover are unlikely to be entirely explained by the growing population in Chicago.

Finally, in Figure C.8, we replicate the synthetic control results using the SDiD approach. The results

remain quantitatively unchanged using this alternative estimator. Importantly, we can leverage the

event-study estimates to compare treated and control units before 1871. As we fail to estimate statisti-

cally significant differences between the two groups, we conclude that the SDiD estimates corroborate

the empirical plausibility of the parallel trends assumption.

IV.D A Quantitative Analysis of the Cultural Legacy of the Fire

We conclude our analysis of the effects of the 1871 Great Chicago Fire by studying its cultural legacy.

We measure the cultural impact of the Fire using comprehensive data on historical buildings listed in

the National Register of Historic Places. We compute each metropolitan area’s total number of sites

by construction year. We view landmarks as a measure of the economically relevant innovations in

construction practices and technologies. The National Register aims to list all places deemed worthy

of preservation due to their cultural importance. Hence, a count of sites indicates the cultural legacy of

the Fire and its impact on architecture. As we discussed in Section I, there is vast qualitative evidence

that the Fire was a crucial agglomeration factor for architects and designers who ultimately formed

the first Chicago School of Architecture (Wermiel, 1996).

We report the results in Table IV. Since landmark construction is relatively rare, we group years at the

decade level. For each metropolitan area, we thus observe two pre-Fire periods (1851–1860 and 1861–

1870) and three post-intervention decades (1871–1880, 1881–1890, and 1891–1900). Column (1) reports

the estimates for the overall number of historic landmarks; column (2) restricts the sample to entries

listed because of their architectural significance; column (3) excludes all sites listed because of their

architectural significance.
22

As in the previous Table, we display the difference between Chicago and

the synthetic control unit. Across all specifications, synthetic Chicago accurately matches the pattern

of the outcome variable observed in Chicago.

We find a sizable increase in the number of listed buildings in Chicago after the Fire relative to

22
A single entry may be associated with more than one area of significance. In the outcome variable, whose results are

displayed in column (2), we look at sites listed solely due to architectural significance. Analogously, in column (3), we

exclude all entries where architecture appears as an area of significance. For this reason, the total number of landmarks

included in the outcomes in columns (2) and (3) is generally lower than that in column (1).
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the counterfactual. The total number of landmark buildings almost doubles relative to the pre-Fire

Chicago average in the 1871–1880 decade, doubles again in the following decade, and by the end

of the analysis sample, the increase is almost six-fold. However, the picture is very different when

contrasting architecture and non-architecture sites. The increase in historical landmarks is driven

by the growth of architectural landmarks relative to the pre-Fire average. By the end of the sample,

architecture-related historical buildings listed in the Register are almost ten times as many as before

the Fire in Chicago, relative to the synthetic control. By contrast, the number of non-architecture-

related sites barely doubles over the same sample period. This sharp difference echoes the historical

evidence indicating that the Fire was a decisive factor in making Chicago the center of US architec-

ture throughout the second half of the century. Provided that culturally relevant heritage sites partly

reflect innovations in construction technology and techniques, these patterns provide evidence that

the pace of construction innovation in Chicago greatly accelerated after the 1871 Fire.

The synthetic difference-in-differences estimates displayed in Figure C.9 confirm the quantitative im-

plications of the synthetic control results and provide empirical support for the plausibility of the

parallel trends assumption.

Our results provide strong evidence that the Great Chicago Fire fostered construction manufacturing

and technological advancements. These patterns are consistent with historical narratives document-

ing the swiftness of the “Great Rebuilding” of the city over the following decade. At the same time,

however, they also indicate that these effects were not short-lived, as they shaped economic activity

in the area well into the twentieth century. Chicago did not die out of economic distress following the

Fire. Instead, it grew to be the second-largest city in the United States. Our results thus indicate that

economic responses to adverse natural disasters may reverse their adverse effects into opportunities

for growth. In the next section, we explore the role of the “industrial policy” intervention in shaping

the magnitude and characteristics of such a large response.

V MECHANISMS

This section examines potential mechanisms that may explain the results presented thus far. We begin

by studying the effects of the Chicago Fire on wood- and non-wood-related construction innovation

to try to isolate the impact of construction policies from the effects of the Fire as such. Second, we

explore the employment dynamics in Chicago before and after the Fire using longitudinal linked

census data. Finally, we use the 1872 Great Boston Fire as a laboratory to study the effects of urban

fires in the absence of significant construction policy interventions.
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V.A Non-Wood and Wood Construction Innovation after the Fires

We begin by studying how the innovation response to the 1871 Chicago Fire was influenced by the

policy that forbade the construction of wooden buildings within the city perimeter. To do so, we

apply the synthetic control framework to non-wood and wood construction patenting activity. The

historical literature suggests that the policy played a key role in shifting economic activity toward non-

wood construction (see Section I.B). Figure IV displays the difference between non-wood (Figure IVa)

and wood (Figure IVb) patenting in Chicago and the synthetic control (in red) and when assigning

the treatment status to each of the 83 remaining metropolitan areas (in gray). The synthetic control

mimics trends in non-wood and wood construction innovation in most cities in the pre-fire period,

suggesting that synthetic control units provide an adequate counterfactual.

In both panels, the red line stands out, indicating that wood-related and non-wood-related innovation

in Chicago increased relative to the counterfactual and that such an increase is larger than in other

cities. However, the effect’s size starkly differs between the two graphs. In particular, by 1890, Chicago

had produced 90 more patents in non-wood construction innovation relative to the counterfactual,

whereas the difference in wood-related innovation was one-third of this figure. To put this difference

in perspective, our estimates imply that approximately 25% of the increase in construction innovation

in Chicago after the 1871 Fire consists of non-wood construction innovation, and less than 7% is due

to wood-related construction technologies.
23

This large difference is consistent with our hypothesis that the policy intervention enacted by the

Board of Fire in 1874 to forbid wooden constructions within the city perimeter shifted the demand

for new buildings onto non-wood constructions. This sharp demand shock ushered in momentous

innovation in non-wood construction, ultimately contributing to the overall increase in construction

innovation.
24

In Figure C.3b and Figure C.3c, we confirm that the effect of the Fire on wood- and non-wood-related

innovation is not driven by economically irrelevant innovation. We consider patents in the top 20% of

the novelty distribution, using the measure developed by Kelly et al. (2021), and find that the baseline

divergence between Chicago and the synthetic control documented with the entire patent corpus is

qualitatively unchanged on this restricted sample of more novel innovations.

Figure C.10 replicates the results using the synthetic difference-in-differences estimator for non-wood

(Figure C.10a) and wood (Figure C.10b) innovation. We find no statistically significant differences be-

23
The remaining 68% of the increase is in construction patents that are not explicitly wood- or non-wood- construction patents.

24
In line with this interpretation, we find similar patterns in non-wood and wood construction innovation when we normalize

both series by total employment (see Figure C.5b–Figure C.5c).
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tween non-wood and wood innovation in Chicago and the control group before 1871. After 1871, and

especially after 1874, non-wood and wood innovation increased in Chicago. As with the synthetic

control estimates, however, the increase in non-wood innovation is considerably larger—roughly

double—than that in wood innovation. The post-Fire treatment effects are, in both cases, statistically

significant beyond the 1% level.

V.B Non-Wood and Wood Construction Manufacturing after the Fires

Following the logic of the previous section, we now turn to the effects of the 1871 Fire on manufac-

turing in wood and non-wood construction. Since innovation and broader economic activity should

co-move, we expect innovation in non-wood construction manufacturing to increase.

Table V reports the county-level estimates obtained using decennial data from the Census of Manu-

factures for Chicago. The Tables report the difference between various indicators of economic perfor-

mance in Cook County, IL, and in the synthetic control unit. The synthetic control units closely match

the pre-treatment outcome values of the treated county (1860 and 1870), hence providing evidence in

support of the identification assumption. The estimates confirm our conjectures. The number of estab-

lishments operating in non-wood construction, their production value, and their wage bill doubled

over the decade following the 1871 Fire. The value of fixed capital and the cost of materials employed

increases by 50% over the same sample period. In Figure C.11, we report the associated distribution of

post-to-pre-intervention RMSPE and confirm that Cook County appears, in most cases, as a clear out-

lier. We find similar patterns when we normalize non-wood manufacturing by total employment (see

Panel B in Table D.5). The synthetic difference-in-differences estimates of the effect of the Chicago Fire

on non-wood manufacturing in Cook County are displayed in Figure C.12. It confirms the baseline

results.

In Table D.6, we replicate the previous exercise, looking at wood-related construction manufacturing.

In this case, however, the synthetic control procedure does not produce a control unit that adequately

matches the pre-treatment trends in the outcome. The absence of an appropriate counterfactual in-

validates any causal inference. However, in all specifications, Cook County exhibits a large upswing

in wood construction manufacturing after the 1871 Fire. If anything, these patterns indicate declining

economic activity in wood-related manufacturing. It is worth noting, however, that neither of these

comparisons bears causal validity because, over the 1860 and 1870 pre-treatment periods, treatment

and control groups are on different trends.
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V.C Employment Dynamics after the 1871 Fire: Evidence from Linked Individual-Level Data

In this section, we leverage the granularity of the census data to measure employment transitions

into construction, wood-, and non-wood-related construction in Chicago. We construct employment

from decennial population censuses and link individuals between the 1870 and the 1880 waves using

state-of-the-art algorithms developed by Abramitzky et al. (2020). Because we look at individuals in

the labor force, we exclude those without a valid occupational response from the sample. Our guiding

question is thus to understand whether individuals living in Chicago at the time of the Fire were more

likely to take up construction jobs and, more specifically, whether these jobs are more likely to be in

non-wood vis-à-vis wood construction.

We estimate variations on the following difference-in-differences specification:

yit = αc(i) + βt + X′
i Γ + δ × [I(c(i) = Chicago)× I(t = 1880)] + ε it, (3)

where i denotes an individual, t ∈ {1870, 1880} denotes a census wave, and αc(i) and βt are city and

census-wave fixed effects. The term Xi collects a set of individual-level controls—race, birth year,

literacy, migration status, and broad occupational category—measured in 1870.
25

The explanatory

variable of interest is the treatment defined as the interaction between a dummy equal to one for

individuals residing in Chicago either in 1870 or in 1880 (I(c(i) = Chicago)) and a post-Fire dummy

variable (I(t = 1880)). Standard errors are clustered at the city level. We employ three dependent

variables: construction employment, wood-related construction employment, and non-wood-related

construction employment.

Under a standard parallel trends assumption, the difference-in-differences coefficient δ̂ captures the

causal effect of living in Chicago after the 1871 Fire on the probability of working in construction. Since

we observe individuals only twice and census data are available at a decennial frequency, we cannot

rule out that the estimates partly reflect shocks other than the Fire occurring in Chicago that influence

the outcome variables. We thus view this exercise as providing descriptive, but not necessarily causal,

evidence on the labor market effects of the Fire.

Columns (1–3) of Table VI report the results. In column (1), the dependent variable is an indicator

equal to one if the individual works in construction in 1880 and zero otherwise; in column (2), we

restrict the attention to non-wood-related construction occupations; in column (3), we only consider

wood-related construction jobs. Our estimates indicate that treated individuals are 2.1% more likely

to work in construction in 1880. This shift is large in magnitude as it corresponds to approximately

25
Results are robust to controlling for individual fixed effects (αi).
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100% of the mean. This large effect is plausibly consistent with urban reconstruction in the aftermath

of the destructive effects of the 1871 Fire. Contemporary observers labeled the swift reconstruction

as the “Great Rebuilding” (Miller, 1996). In column (2), we show that treated individuals were ap-

proximately 0.26% more likely to work in non-wood-related construction, implying that the share of

individuals employed in non-wood construction in Chicago doubled relative to the mean. By com-

parison, in column (3), we find that while wood-related construction employment increased by 0.6%

after the Fire, this effect corresponds to a 50% increase relative to the mean. These findings echo

evidence from the Census of Manufactures, indicating that construction manufacturing activity in

Chicago increased after the Fire and that such an increase was primarily (though not exclusively)

driven by non-wood-related industries.

The heterogeneous response of wood and non-wood construction to the 1871 Fire documented using

individual micro-data, is thus consistent with more aggregate—yet more solidly causal—city- and

county-level evidence and indicates that the booming construction industry in Chicago after the Fire

was predominantly dominated by non-wood construction firms, as envisioned by the 1874 municipal

ordinance.

V.D The Impact of the 1872 Great Boston Fire on Construction Innovation and Manufacturing

A possible explanation for the pattern of construction manufacturing in Chicago after the Fire is that

it reflects a more general economic upswing impressed by the demand shock originating from the re-

building effort–rather than the effect of the industrial policies implemented. We already saw that this

explanation is unlikely: first, the heterogeneous responses of innovation to the 1871 Fire depended on

the relative similarity to construction innovation within the technology space (Section IV.B); second,

the Fire had a much stronger impact on non-wood (rather than wood) innovation and manufactur-

ing (Section V.B). Another approach to gauge this hypothesis is to contrast the case of Chicago with

Boston, which also experienced a destructive fire in 1872. While the Boston and Chicago fires differed

in proportions, both caused massive damage and required extensive reconstruction efforts, resulting

in large temporary economic booms (Miller, 2000; Hornbeck and Keniston, 2017). Importantly, a key

difference between the two contexts is that while Chicago experienced the introduction of compre-

hensive provisions, prohibiting the use of wood and combustible materials in new buildings, this was

not the case in Boston (see details in Section I).

In Figure C.13, we display average plot-level land values in Chicago and Boston. Both fires targeted

central parts of both cities, where land values, indicated by the red line, were on average higher than

in the rest of the city, as shown by the gray line. In both cities, land values in areas exposed to the

fire increased more than in unaffected areas. This comparison suggests that we can cautiously look at
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the Boston fire as a plausible counterfactual for the Chicago fire in the absence of construction policy

interventions.

We begin by looking at construction innovation in Boston after 1872. Figure V replicates Figure IIc,

using 1872 as the treatment year. Boston is displayed in red, and all other cities—except Chicago—

are displayed in gray. The Figure reports the difference between the number of construction-related

patents in each treated city and the associated synthetic control. In Boston, these estimates reflect the

treatment effect of the 1872 Fire, whereas all other cities are “placebos.” As in the case of Chicago,

the synthetic control closely mimics Boston—and almost all other metropolitan areas—before 1872.

However, unlike Chicago, Boston does not display any significant increase in construction-related

innovation after the Fire. The difference between Boston and its synthetic control is not different

from most other metropolitan areas throughout the sample period. It thus seems implausible that the

increase in construction innovation observed in Chicago is entirely explained by a general economic

upswing following the Fire. If that were the case, it would be natural to expect a similar pattern in

Boston. The synthetic difference-in-differences estimates confirm these patterns. Appendix Figure

Figure C.4b shows no significant response of construction innovation in Boston after the 1872 Fire.

The statistically insignificant difference between Boston—or Suffolk County—and the control group

lends credibility to the identifying parallel trends assumption.

In Panel A of Table VII, we look at the response of construction manufacturing in Suffolk County,

MA—where Boston is located—compared to the synthetic control counterfactual. As expected, we

find a response of manufacturing in the post-Fire period, with production value and material costs

increasing by approximately 50% of their pre-Fire values.
26

On the other hand, in Boston, we do

not find a post-Fire response of non-wood construction manufacturing (see Panel B of Table VII).

The point estimates are considerably smaller than in Chicago, negative (with the exception of fixed

capital, which may take more time to adjust), and not statistically significant. This pattern further

supports our argument: Boston did not see the implementation of policies fostering the construction

of non-wood buildings and did not see innovation and manufacturing in this sector.
27

Finally, in columns (4–6) of Table VI, we estimate the difference-in-differences specification (3) us-

ing Boston, as opposed to Chicago, as the cross-sectional treatment variable (i.e., I(c(i) = Boston)).

We find that the probability of working in construction after the 1872 Fire in Boston increased by

approximately 1.5%. This effect is roughly 70% as large as the increase in construction manufactur-

ing we estimate in Chicago. This finding echoes historical and quantitative evidence indicating that

26
We find no detectable response in terms of the number of establishments, labor costs, and fixed capital.

27
As for wood construction manufacturing, the synthetic control in the pre-Fire period does not allow us to draw causal

implications (see Table D.7).
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the reconstruction efforts in Boston were substantial (Hornbeck and Keniston, 2017). In turn, neither

non-wood (column 5) nor wood-related (column 6) construction employment displayed a statisti-

cally significant response to the 1872 Fire, unlike in Chicago. Our results thus strongly suggest that

the construction policy enacted by the Chicago municipal authority was key in shifting economic

activity toward non-wood construction activity. These exercises indicate that the impact of the 1872

Great Boston Fire was, at best, modest compared to the 1871 Great Chicago Fire.

Altogether, these results suggest that it is unlikely that urban fires inherently fuel local economic

growth by generating demand shocks for reconstruction. On the other hand, they suggest that the

construction policy enacted in Chicago in response to the 1871 fire was key in supporting innovation,

manufacturing employment, and, ultimately, contributing to long-term economic growth.

VI CONCLUSIONS

Climate change is among civilization’s most pressing challenges. Worsening climate conditions are

impacting the frequency and severity of natural disasters, which are expected to rise further over

the next decades. Adaptation and mitigation efforts critically hinge on technological change. Previ-

ous research documents that directed innovation can compensate for some of the adverse effects of

natural disasters (Moscona and Sastry, 2023). In general, however, market competition may provide

inefficiently low levels of resilience-enhancing innovation (Acemoglu, 2012).

This paper asks whether industrial policy can steer innovation to support technologies that mitigate

the adverse effects of natural disasters. We study the 1871 Chicago Fire, which destroyed large parts

of the city center. In response, the municipal authority forbade the construction of wooden buildings

within the city perimeter.

Our analysis reveals that the 1871 Fire had large and positive effects on construction innovation in

Chicago. The Fire fueled construction manufacturing across a broader set of economic activity indica-

tors compiled from manufacturing censuses, such as the number of construction firms, their output,

and various indicators of their size, and architectural heritage sites.

We employ two strategies to link these effects to the construction policy implemented by the munic-

ipal authority. First, we analyze the heterogeneous treatment effects of the 1871 Fire on wood- and

non-wood innovation and manufacturing in Chicago. Our results indicate that the Chicago Fire dis-

proportionately fostered non-wood-related construction technical change and manufacturing firms,

whereas the effects on wood construction are modest. Second, we study Boston in the aftermath of the

1872 Fire, which ravaged its business district but did not trigger any construction policy legislation.
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We find no effects of the 1872 Fire on Boston’s construction innovation and a moderate increase in

manufacturing output.

Our results indicate that Chicago’s construction policy channeled the construction demand shock

generated by the 1871 Fire into non-wood construction, thereby propelling directed innovation. More

generally, they reveal that public policy can effectively sustain adaptation efforts and foster economic

growth in response to ever-increasing concerns over deteriorating climate conditions.
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FIGURES

Figure I. Metropolitan Areas Above 20,000 Population

Notes. This map reports the location of the 84 metropolitan areas in the analysis sample. The coordinates of each metropoli-

tan area report the center of its largest city. To construct the metropolitan areas, we retain all cities above 20,000 inhabitants;

then, we agglutinate each minor city below the threshold to its closest city within 20 kilometers above the 20,000 population

threshold. The red star reports the location of Chicago; the blue dots report the location of all other cities. Cities are overlaid

on state borders in 1870, before the Great Chicago Fire (1871). The full list of metropolitan areas is reported in Appendix

Table D.2. Referenced on page: 12.
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Figure II. Synthetic Control Estimates of the Effect of the Great Chicago Fire on Construction

Innovation
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Notes. This Figure reports the effect of the Great Chicago Fire (1871) on construction innovation in Chicago. The dependent

variable is the number of patents in construction. The unit of observation is a metropolitan area at a yearly frequency

between 1853 and 1900. In Panel IIa, we compare trends in construction patenting in Chicago and the control “Synthetic”

Chicago; Panel IIb reports the difference between the two. In Panel IIc, we artificially assign the treatment status to each

of the 84 metropolitan areas in the sample, and the red line highlights the treatment effect of Chicago. In Panel IId, we

report the ratio between the post-Fire and pre-Fire mean squared prediction error across metropolitan areas, and highlight

Chicago in red. The black dashed line marks the year of the Great Chicago Fire (1871). Referenced on pages: 16, 17, 27.
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Figure III. Spillover Effects of the Great Chicago Fire on Innovation
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Notes. This Figure reports the effect of the Great Chicago Fire on non-construction innovation. The unit of observation is a

metropolitan area at a yearly frequency between 1853 and 1900. The Graph reports the gap between Chicago and Synthetic

Chicago. The dependent variable is the number of patents by tercile of technology class-similarity to construction patents.

To construct the similarity, we rank technology classes by the share of patents in those classes that are also construction

patents. The solid line reports the effect on the top tercile of most similar technology classes, the dashed line reports the

effect on the mid tercile, and the dotted line reports the effect on the bottom tercile. The black dashed line marks the year

of the Great Chicago Fire (1871). Referenced on pages: 18, 19.
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Figure IV. Synthetic Control Estimates of the Effect of the Great Chicago Fire on Non-Wood

and Wood Construction Innovation
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Notes. This Figure reports the effect of the Great Chicago Fire (1871) on non-wood- and wood-related construction innova-

tion in Chicago. The dependent variable is the number of patents in construction that are not related to the use of wooden

materials (Panel IVa) and those that are related to wooden materials (Panel IVb). The unit of observation is a metropolitan

area at a yearly frequency between 1853 and 1900. In each panel, we artificially assign the treatment status to each of the 84

metropolitan areas in the sample, and the red line highlights the treatment effect of Chicago. The black dashed line marks

the year of the Great Chicago Fire (1871). Referenced on page: 22.
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Figure V. Synthetic Control Estimates of the Effect of the Great Boston Fire on Construction

Innovation
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Notes. This Figure reports the effect of the Great Chicago Fire on construction innovation in Boston. The unit of observation is

a metropolitan area at a yearly frequency between 1853 and 1900. The Graph reports the gap between Boston and Synthetic

Boston. The dependent variable is the number of patents in construction. In the Figure, we artificially assign the treatment

status to each of the 84 metropolitan areas in the sample minus Chicago, and the red line highlights the treatment effect on

Boston. The black dashed line marks the year of the Great Boston Fire (1872). Referenced on page: 27.
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TABLES

Table I. Selected Descriptive Statistics

Mean Std. Dev. Min Max Units Obs.

(1) (2) (3) (4) (5) (6)

City-Level Descriptive Statistics

Panel A. Innovation Activity
Total Patentsit 74.100 159.512 0.000 1721.000 84 4032

Construction Patentsit 17.241 42.848 0.000 582.000 84 4032

Wood Construction Patentsit 2.003 4.552 0.000 58.000 84 4032

Non-Wood Construction Patentsit 3.830 9.761 0.000 118.000 84 4032

Panel B. Demographics
Populationi (1,000s) 107.901 137.457 20.692 960.329 84 84

Imputed Income per Capitai 710.004 135.903 393.050 1005.388 84 84

Share of Meni (%) 49.439 2.330 44.960 62.438 84 84

Share Aged 0-25i (%) 58.457 4.544 48.340 68.534 84 84

Share Aged 26-45i (%) 27.567 3.354 19.974 40.577 84 84

Share Aged 46+i (%) 13.975 3.171 7.574 23.648 84 84

Share Literatei (%) 60.898 15.202 22.098 77.576 84 84

Share of Non-Whitei (%) 13.869 22.119 0.102 73.264 84 84

Share of Foreign Borni (%) 22.024 13.333 0.091 48.258 84 84

Panel C. Employment Shares in Selected Occupations
Agriculturei (%) 8.318 8.775 0.141 46.092 84 84

Low-Skilled Manufacturei (%) 7.232 5.256 0.317 25.899 84 84

High-Skilled Manufacturei (%) 5.670 1.940 0.406 9.764 84 84

Laboreri (%) 4.682 1.904 0.095 11.117 84 84

Servicesi (%) 4.416 1.981 1.909 10.805 84 84

Panel D. Employment Shares in Selected Industries
Agriculturei (%) 8.574 8.729 0.265 46.152 84 84

Liberal Professionsi (%) 6.641 2.246 2.460 13.542 84 84

Utilitiesi (%) 4.998 2.100 2.030 12.115 84 84

Constructioni (%) 2.391 0.818 0.177 4.280 84 84

Textilesi (%) 1.937 4.141 0.000 21.238 84 84

County-Level Descriptive Statistics

Panel E. Manufacturing Census
N. of Establishmentsct (1,000s) 0.084 0.320 0.001 11.286 1965 4802

Production Valuect (1,000s) 2168.090 13557.932 0.550 463887.969 1965 4802

Fixed Capitalct (1,000s) 1136.421 6319.986 0.100 186673.594 1965 4802

Cost of Materialsct (1,000s) 1317.791 8234.420 0.100 281470.219 1965 4802

Cost of Laborct (1,000s) 390.593 2567.445 0.000 95319.352 1965 4802

Notes. This Table reports descriptive statistics for selected variables. Units are metropolitan area in Panels A–D and

counties in Panel E. All variables in panels B–E are expressed as percentage shares of the city population and refer to

the 1870 census. Data in Panel E are divided by 1,000 for readability and are tabulated from the Census of Manufactur-

ing. Referenced on pages: 10, 11, 9.
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Table II. Comparison between Chicago, the Other Metropolitan Areas, and Synthetic

Chicago

Chicago All Other Cities Synthetic Chicago

Mean Mean Difference Mean Difference

(1) (2) (3) (4) (5) (6) (7)

Panel A. Demographics
Literacy Rate (%) 69.565 60.793 8.772*** (1.686) 66.582 2.983*** (0.613)

Imputed Income per Capita 843.227 708.399 134.828*** (15.009) 832.100 11.127 (40.070)

Share of Whites (%) 98.788 85.716 13.072*** (2.443) 98.159 0.628 (1.082)

Share of Blacks (%) 1.210 14.022 -12.812*** (2.452) 1.086 0.124 (0.398)

Share of Natives (%) 52.150 78.287 -26.137*** (1.447) 64.686 -12.536** (6.139)

Panel B. Employment Share (%) by Occupation
Liberal Profession 1.361 1.030 0.331*** (0.032) 1.308 0.053 (0.155)

Farmer 0.357 8.413 -8.057*** (0.970) 0.549 -0.192 (0.233)

Manager 3.008 1.974 1.034*** (0.081) 3.146 -0.137 (0.161)

Clerical Worker 1.399 0.649 0.750*** (0.037) 1.350 0.050 (0.092)

Sales 2.668 1.368 1.300*** (0.072) 2.788 -0.120 (0.437)

Skilled Manufacture 8.681 5.634 3.047*** (0.212) 7.753 0.928* (0.519)

Low-Skill Manufacture 6.451 7.241 -0.790 (0.584) 7.580 -1.128 (0.885)

Service 5.375 4.405 0.971*** (0.220) 5.408 -0.032 (0.861)

Panel C. Employment Share (%) by Industry
Laborer 6.477 4.660 1.816*** (0.210) 5.721 0.755 (0.686)

Agriculture 0.553 8.671 -8.118*** (0.965) 0.770 -0.217 (0.270)

Chemistry 0.068 0.079 -0.010 (0.014) 0.209 -0.141 (0.133)

Construction 3.864 2.373 1.491*** (0.089) 3.210 0.654*** (0.216)

Liberal Professions 8.391 6.620 1.771*** (0.249) 8.353 0.039 (1.069)

Metallurgy 0.689 0.767 -0.077 (0.065) 0.631 0.059*** (0.014)

Public Administration 0.375 0.298 0.076*** (0.027) 0.504 -0.130* (0.074)

Textiles 0.151 1.959 -1.808*** (0.460) 0.593 -0.442*** (0.102)

Trade 6.738 3.611 3.127*** (0.172) 6.582 0.157 (0.619)

Transports 3.552 1.985 1.566*** (0.098) 3.102 0.450*** (0.160)

Utilities 6.116 4.985 1.131*** (0.233) 6.182 -0.065 (1.004)

Residual Industries 3.702 2.989 0.713*** (0.150) 3.775 -0.073 (0.512)

Engineering 0.456 0.387 0.069** (0.032) 0.578 -0.122 (0.094)

Notes. This Table compares the values of the balancing variables included in the synthetic control design in Chicago and

in the other metropolitan areas in the sample. Column (1) reports the average value of the various variables for Chicago;

columns (2) and (5) report the average across all control cities and in synthetic Chicago, respectively. The weights used to

compute the co-variates in the synthetic control are obtained by applying the synthetic control approach on construction

patenting. In columns (3–4) (resp. 6–7), we report the difference between Chicago and all other cities (resp. synthetic

Chicago). Robust standard errors are displayed in parentheses. All data are computed from the 1870 population census

and expressed in population percentage. Referenced on page: 15.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table III. Synthetic Control Estimates of the County-Level Impact of the Great Chicago Fire

on Construction Manufacturing

Dependent Variable

(Treated County - Synthetic Treated County)

(1) (2) (3) (4) (5)

# Estab-

lishments

Value of

Production

Fixed

Capital

Cost of

Materials

Cost of

Labor

1860 (Pre-Fire) 0.022 -0.497 -0.085 0.174 -6.182

1870 (Pre-Fire) 0.036 -1.288 -0.057 0.351 2.172

1880 (Post-Fire) 31.506 1307.094 427.591 637.748 292.455

Mean Dep. Var. (Before 1870) 8.400 227.314 113.150 73.653 83.904

Number of Counties 76 76 76 76 76

Number of Observations 228 228 228 228 228

Notes. This Table reports the impact of the Great Chicago (1871) Fire on manufacturing activity in construction as measured

in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The

dependent variable is: in column (1), the number of establishments; in column (2), production value; in column (3), fixed

capital; in column (4), the cost of materials; in column (5), the cost of labor. Each column reports the difference between

the observed outcome in Cook County and a synthetic control constructed using the baseline balancing variables and pre-

treatment outcome values. The sample includes all counties with at least one metropolitan area. Referenced on page: 20.
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Table IV. Synthetic Control Estimates of the Impact of the Great Chicago Fire on Historical

Landmarks

Dependent Variable

(Treated City - Synthetic Treated City)

(1) (2) (3)

All Historic

Landmarks

Architecture

Landmarks

Non-Architecture

Landmarks

1851–1860 (Pre-Fire) -0.540 -0.003 0.003

1861–1870 (Pre-Fire) 0.305 0.001 0.011

1871–1880 (Post-Fire) 16.615 7.652 3.769

1881–1890 (Post-Fire) 39.305 18.625 1.944

1901–1900 (Post-Fire) 56.845 28.492 3.115

Mean Dep. Var. (Before 1870) 9.500 3.000 2.500

Number of Metro Areas 84 84 84

Number of Observations 420 420 420

Notes. This Table reports the effect of the Great Chicago Fire (1871) on historical landmarks in Chicago. The dependent

variable is the number of historical landmark buildings listed by construction year (column 1), the number of buildings

listed due to architectural significance (column 2), and all other significant buildings (column 3). The unit of observation

is a metropolitan area at a decade frequency between 1850 and 1900. The estimates report the difference between the total

number of landmark buildings by decade in Chicago and those in the control “Synthetic” Chicago. Referenced on page: 21.
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Table V. Synthetic Control Estimates of the County-Level Impact of the Great Chicago Fire

on Non-Wood Manufacturing

Dependent Variable

(Treated County - Synthetic Treated County)

(1) (2) (3) (4) (5)

# Estab-

lishments

Value of

Production

Fixed

Capital

Cost of

Materials

Cost of

Labor

1860 (Pre-Fire) 0.002 -0.001 0.021 0.002 0.021

1870 (Pre-Fire) -0.002 -0.068 -0.011 0.006 0.068

1880 (Post-Fire) 2.637 74.742 22.106 9.063 35.840

Mean Dep. Var. (Before 1870) 1.250 36.139 20.335 7.291 17.093

Number of Counties 76 76 76 76 76

Number of Observations 228 228 228 228 228

Notes. This Table reports the impact of the Great Chicago Fire (1871) on non-wood-related manufacturing activity as mea-

sured in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880.

The dependent variable is: in column (1), the number of establishments; in column (2), production value; in column (3),

fixed capital; in column (4), the cost of materials; in column (5), the cost of labor. Each column reports the difference between

the observed outcome in Cook County and a synthetic control constructed using the baseline balancing variables and pre-

treatment outcome values. The sample includes all counties with at least one metropolitan area. Referenced on page: 24.
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Table VI. Individual-Level Impact of the Great Chicago Fire on Construction Employment

Employed in: Employed in:

(1) (2) (3) (4) (5) (6)

Construction

Non-Wood

Construction

Wood

Construction

Construction

Non-Wood

Construction

Wood

Construction

Chicago × Post 2.112
∗∗∗

0.257
∗∗∗

0.596
∗∗

(0.712) (0.057) (0.240)

Boston × Post 1.455
∗∗∗

0.123 0.312

(0.427) (0.102) (0.277)

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes

Number of Counties 84 84 84 84 84 84

Observations 3,715,020 3,715,020 3,715,020 3,718,125 3,718,125 3,718,125

Mean Dep. Var. 1.914 0.317 1.106 1.907 0.317 1.103

Notes. This Table reports the effect of living in Chicago (columns 1–3) and Boston (4–6) before their respective fire on sub-

sequent employment in construction. The unit of observation is an individual, observed two times in the 1870 and 1880

population censuses. The dependent variable is a dummy equal to one if the individual in 1880 is recorded working in con-

struction (columns 1 and 4), non-wood-related construction (columns 2 and 5), and wood-related construction (columns

3 and 6). The sample includes individuals who were not working in construction in 1870. The treatment is an interaction

term between an indicator variable equal to one if the individual is recorded as living in Chicago (columns 1–3) or Boston

(columns 4–6) and zero otherwise, and a dummy equal to one for the post-Fire observation (1880) and zero otherwise. Each

specification includes city and census year fixed effects and further controls for individual cohort, race, literacy, internal

migration, and occupation status. Standard errors are clustered at the metropolitan area level and are displayed in paren-

theses. Referenced on pages: 25, 27.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table VII. Synthetic Control Estimates of the County-Level Impact of the Great Boston Fire

on Non-Wood Manufacturing

Dependent Variable

(Treated County - Synthetic Treated County)

(1) (2) (3) (4) (5)

# Estab-

lishments

Value of

Production

Fixed

Capital

Cost of

Materials

Cost of

Labor

Panel A. Construction Manufacturing
1860 (Pre-Fire) -0.042 0.973 0.127 -0.043 -0.210

1870 (Pre-Fire) -0.050 2.229 0.395 0.066 -0.502

1880 (Post-Fire) -2.512 212.977 -8.575 121.383 -36.838

Mean Dep. Var. (Before 1870) 16.750 540.840 224.501 249.104 145.263

Panel B. Non-Wood Construction Manufacturing
1860 (Pre-Fire) 0.000 0.094 -0.045 0.008 0.007

1870 (Pre-Fire) 0.013 0.189 -0.070 0.049 0.061

1880 (Post-Fire) -2.441 -55.599 6.064 -25.567 -18.376

Mean Dep. Var. (Before 1870) 1.150 44.264 3.865 21.810 13.034

Number of Counties 76 76 76 76 76

Number of Observations 228 228 228 228 228

Notes. This Table reports the impact of the Great Boston (1872) Fire on construction and non-wood-related manufacturing

activity as measured in the Census of Manufacturing. The unit of observation is a county at a decade frequency between

1860 and 1880. The dependent variable is: in column (1), the number of establishments; in column (2), production value;

in column (3), fixed capital; in column (4), the cost of materials; in column (5), the cost of labor. Each column reports the

difference between the observed outcome in Suffolk County and a synthetic control constructed using the baseline balancing

variables and pre-treatment outcome values. The sample includes all counties with at least one metropolitan area. The Table

reports separately the effects on overall construction manufacturing (Panel A) and non-wood construction manufacturing

(Panel B). Referenced on page: 27.
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A DATA APPENDIX

This section provides further information on the primary data sources underlying the datasets used

in the main analysis and the methods adopted to construct them.

A.I Patent Data

We collect a novel dataset of US patents spanning 1853–1900. Compared to existing datasets, we

develop a new methodology to extract information from patent texts. This section describes this new

repository.

A.I.1 Motivation

Our analysis requires detailed information on each inventor’s location to assign the patents to the

closest metropolitan area. We also need text data to identify construction, wood- and non-wood-

related innovations, and technological classes. Additionally, the United States Patent Office number

allows to match patent records to the novelty measure produced by Kelly et al. (2021). We now briefly

discuss why publicly available datasets do not satisfy these data requirements.

There are three datasets of US patents covering the period 1850–1900 (Andrews, 2021). Among those,

the data produced by Sarada et al. (2019) and Petralia et al. (2016) are publicly available. Sarada et al.

(2019) digitize the Annual Reports of the Commissioner of Patents and the Annual Indices of Patents.

This dataset starts in 1870 and does not contain geographical information on inventors’ addresses

beyond their state. In addition, it does not include text data, as the primary source is not the text of

the patent but an index.

Petralia et al. (2016) extracted patent information from digitized images of US patents, as we do. The

data contain information on the county of the inventors. This data is, therefore, not suited for our anal-

ysis, which is performed at a more granular level. Importantly, this dataset does not contain the text

of the patents, which we use to identify construction and wood- and non-wood-related construction

innovations.

A.I.2 Methodology to Assemble the Dataset

We rely on the corpus of digitized US patents produced by Google Patents. We collect the universe of

patent images by adapting the algorithm developed by Moser and San (2020). On top of the patent

images, we collect from Google Patents the CPC technological classes of each patent and the backward

and forward citations, which we do not use in this paper. Then, we employ a commercial optical

character recognition (OCR) software—Amazon’s textract—to convert the images into machine-

readable text.
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From the patent texts, we follow a procedure similar to Coluccia and Dossi (2025), who apply it to

historical British patents. We use a large language model—GPT 4o-mini—to extract the name and

surname of the inventors, their address of residence, the filing and issue date of the patent, and infor-

mation on whether the patent has a firm assignee. Compared to standard extraction methods relying

on regular expressions, such as those employed by Berkes (2018), the flexibility of large language

models allows us to parse the data even in the presence of minor OCR errors or syntactical inconsis-

tencies.

Lastly, we use a commercial georeference software—Google Maps API—to assign latitude and lon-

gitude coordinates to the address of each inventor. The address listed on the patent is the residence

of the inventor. In small towns, the address indicates the town. In larger cities, the proper address

appears on the patent. For consistency, we georeference the town given that the analysis is performed

at that level of spatial aggregation.

A.I.3 Comparison with Existing Datasets

The dataset contains information on all patents listed on Google Patents issued between 1853 and

1900. We have the full digitized text of the patent, the name and surname of the inventor(s), their

address(es), their latitude and longitude, the filing and issue date of the patent, and an assignee flag.

Since the dataset contains the unique patent number, we can match our records with the novelty

measure assembled by Kelly et al. (2021). From Google Patents, we also have the CPC technological

classification associated with each patent.

Compared to Andrews (2021), whose coverage spans 1870 to 1942, our data has more detailed geo-

graphical information, more systematic inventors’ names and surnames, full-text access, CPC tech-

nology classification information, filing, as well as issue date, and more precise dates. Compared

to Petralia et al. (2016), our dataset contains more granular geographical information—down to the

georeferenced town of each inventor, as opposed to the county—, CPC classes, filing and issue dates,

and full-text access. Our data essentially mimics the state-of-the-art dataset produced by (e.g. Berkes,

2018), which is unfortunately not publicly accessible, over a shorter time window.

A.I.4 External Validation

Even though the existing datasets are not suited for our empirical application, we use them to validate

the coverage of our new sample. Figure C.1a compares the number of patents in our dataset with Pe-

tralia et al. (2016)—dashed gray line—and Sarada et al. (2019)—dotted gray line. Figure C.1b reports

coverage rate, defined as the number of patents in our dataset relative to Petralia et al. (2016)—red

solid line—and Sarada et al. (2019)—gray dashed line, expressed in percentage.
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Our series mimics Petralia et al. (2016) throughout the period. The coverage rates vary between 90%

before the 1870s and 110% during the later part of the period, indicating that our dataset contains more

patents. The data by Sarada et al. (2019) is less comprehensive—our dataset contains one-third more

patents between 1870 and 1880 and one-tenth more towards the end of the century—but displays a

similar co-movement with our series. Importantly, even though we cannot perform validation with

the dataset developed by Berkes (2018), their data and that of Petralia et al. (2016) display substantial

overlap before 1900, which indicates that our coverage rate of his dataset will mimic that with Petralia

et al. (2016).

A.I.5 Methodology to Identify Construction Patents

We adopt a simple dictionary-based procedure to identify patents related to construction, non-wood

construction, and wood construction.

First, we generate a dictionary of 30 words related to construction using GPT-o3. The words are dis-

played in Table D.1. Then, we search for the number of instances each word appears in the text of each

patent. A patent is identified as “construction-related” if at least one word appears at least five times

in its text. The results are not sensitive to alternative, more demanding thresholds, but increasing

the required threshold increases the rate of false negatives without significantly impacting the rate of

false positives. We provide a more detailed discussion below.

Second, among construction patents, we search for wood- and non-wood-related innovations. Using

GPT o1, we generate a list of 12 wood-related and 11 non-wood-related words. We then count the

number of instances each word appears in the patents’ texts. A patent is identified as “wood-related

construction” if it mentions at least one word from column (1) of Table D.1 at least five times and at

least one word from column (2). Analogously, a patent is identified as “non-wood-related construc-

tion” if it mentions at least one word from column (1) of Table D.1 at least five times and at least one

word from column (3).

We manually check the plausibility of the results obtained using this dictionary-based approach on a

random sample of 200 patents. Within this sample, 41 patents were flagged as construction-related,

five as wood-construction, and six as non-wood-construction. We did not find false positives, and

the algorithm missed four patents that a human would have coded as construction, thus yielding a

10% false negatives rate among construction patents. Increasing the threshold to ten patents over the

same sample decreased the rate of false negatives to 5% but decreased the rate of true positives by

almost one-third. While suggestive, this exercise indicates that the five-word threshold is reasonable,

if ad-hoc, heuristic to identify construction-related innovations.
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A.II Population Census

We use individual-level data mapped to CPP locations to compute demographic characteristics of

the metropolitan areas and counties. The synthetic control and synthetic difference-in-differences

estimates use, as balancing variables, the share of natives, blacks, imputed income per capita (OCC-

SCORE), and the employment shares by occupation and industry.

To compute the employment share by occupation, we use the OCC1950 standardized codes to con-

struct a coarser occupational taxonomy that follows from the categories provided by IPUMS: pro-

fessionals (OCC1950 between 0 and 99), farmers (OCC1950 between 100 and 123 and 810 and 840),

managers (OCC1950 between 200 and 290), clerical (OCC1950 between 300 and 390), sales (OCC1950

between 300 and 390), craftsmen (OCC1950 between 500 and 595), operatives (OCC1950 between 600

and 690), services (OCC1950 between 700 and 790), and laborers (OCC1950 between 910 and 970).

Similarly, to construct the employment share by industry, we use the IND1950 standardizes codes to

construct a coarser industry taxonomy following IPUMS: agriculture (IND1950 between 105 and 126),

chemicals (IND1950 between 466 and 478), construction (IND1950 between 246 and 246), engineering

(IND1950 between 367 and 388 or 898), liberal professions (IND1950 between 716 and 897), metallurgy

(IND1950 between 336 and 348), miscellaneous manufacturing (IND1950 between 306 and 358, 406

and 429, and 456 and 459), public administration (IND1950 between 906 and 946), textiles (IND1950

between 436 and 449), trade (IND1950 between 606 and 699), transportation (IND1950 between 506

and 579), and utilities (IND1950 between 596 and 598 and 826 and 859).

All variables from the population census are measured in 1870, i.e., the year before the Great Chicago

Fire.

A.III Manufacturing Census

We compile manufacturing data—number of establishments, value of production, labor cost, material

cost, and capital—from county-by-industry data from the Census of Manufactures transcribed by

Hornbeck and Rotemberg (2024). The sample comprises all counties with at least one metropolitan

area.

We use the industry concordance table provided by the authors to construct a county-by-industry

panel at the decade level between 1860 and 1880. The final sample is a decadal county-level panel

that records the various variables for different industries. In particular, we group the “construction,”

“construction materials,” and “furniture” as one “construction” industry, the “brick, stone, and tile,”

“marble and stone work,” and “lime and cement” titles as one “non-wood manufacturing” industry,

and the “lumber, sawed,” “wood products, other,” “wood, turned and carved,” “wooden ware,”
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and “saws” titles as one “wood manufacturing” industry. All other industry classifications remain

unchanged.

A.IV Historical Landmarks

We collect all historical landmarks from the “National Register of Historic Places” (Stutts, 2024). We

georeference each entry using the provided address and Google Maps API. We assign latitude and

longitude to 99% of the landmarks in the sample. Each landmark is then allotted to the closest CPP

location within 20 Km, following the same procedure we apply to the patent records. The National

Register does not contain information on the construction year. We thus manually search each entry

on Wikipedia and assign a construction year to 77% of the entire dataset. Among the landmarks in

the metropolitan analysis sample, 85% have a recorded construction year. We include in the sample

entries that do not refer to “buildings” (64% of the sample), thus excluding “districts” (20%), “objects”

(0.25%), and “sites” (13%).
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B SUMMARY OF THE ROBUSTNESS ANALYSES

This section provides complementary information on the robustness exercises mentioned in passing

in the main text.

B.I Patent Novelty Data

We use the text-based measure by Kelly et al. (2021) to explore the effect of the 1871 Fire on economi-

cally relevant innovation. Intuitively, a patent that is more similar to future patents than to previous

patents is labeled as “more innovative.” More formally, let the backward inverse-document frequency

associated with word w be defined as

BIDFw,t ≡ log
(

Number of Patents Issued Before t
1 + Number of Patents Issued Before t that contain word w

)
. (B.1)

To each patent-word pair, it associates a variable equal to the number of instances word w appears

in patent i, normalized by the patent length. Let i denote the patent and the set of words it contains.

The term-frequency weight is equal to

TFwi ≡
∑c∈i 1(c = w)

∑c∈i 1(c)
, (B.2)

where the numerator returns how many times word w appears in patent i, and the denumerator is the

number of words in patent i. The TF-BIDF associated with word w, patent i at time t is the product

between the TF and the BIDF:

TF-BIDFwi,t ≡ TFwi × BIDFw,t. (B.3)

The vector TF-BIDFi,t thus collects the TF-BIDFwi,t for all words w in i, normalized by its norm to have

unit length.

The approach allows the representation of each patent as a TF-BIDF vector. One can thus compute

a measure of similarity—in their case, the cosine similarity—between each patent pair. In particular,

the backward similarity is the average similarity between i and all previous patents within τ1 years:

Backward Similarity
τ1
i ≡ 1

|F−τ1
i | ∑

j∈F−τ1
i

ρi,j, (B.4)

where the set F−τ1
i denotes the set of US patents issued within τ1 years from the issue year of patent

i and ρi,j is the cosine similarity between the vectors TF-BIDFi,t and TF-BIDFj,t. Analogously, the
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forward similarity is the average similarity with all patents in the later τ years:

Forward Similarity
τ2
i ≡ 1

|F+τ2
i | ∑

j∈F+τ2
i

ρi,j, (B.5)

where the set F+τ2
i denotes the set of US patents issued τ2 years after the issue year of patent i. Given

these measures, one can compute the similarity of p with future relative to previous patents:

Excess Forward Similarity(τ1, τ2) ≡
∑j∈F+τ2

j
ρi,j

∑j∈F−τ1
i

ρi,j
. (B.6)

In our application, we take τ1 = τ2 = 5 to have a symmetric 5-year window around each patent. The

results remain qualitatively unchanged when using 1- and 10-year symmetric windows. Following

Kelly et al. (2021), we partial out year fixed effects from the raw Excess Forward Similarity(τ1, τ2)

measure to ensure that aggregate trends in language and patent redaction do not influence the results.

A patent is then defined as “novel” if it is in the top 20% of the excess forward similarity distribution.

The results remain qualitatively unchanged using different thresholds at the 5% and 10%.

Figure C.3 displays the synthetic control results of the effect of the Great Chicago Fire on novel patent-

ing in construction (Figure C.3a), non-wood construction (Figure C.3b) and wood construction (Fig-

ure C.3c). The divergent trajectories between Chicago and the synthetic control unit indicate that the

effect of the Fire on innovation is not disproportionately driven by economically irrelevant or unorig-

inal innovation.

B.II Synthetic Difference-in-Differences

The synthetic difference-in-differences estimator developed by Arkhangelsky et al. (2021) nests the

insights of standard synthetic control and difference-in-differences estimators. As highlighted by

Arkhangelsky et al. (2021), the synthetic control method is typically applied in settings with one or a

few treated units, where the parallel trends assumption required by the difference-in-differences esti-

mator is unlikely to hold. The synthetic difference-in-differences estimator weights units in the control

group to match the treated unit in terms of a set of specified pre-treatment observable characteristics

and the outcome to maximize the empirical plausibility of the parallel trends assumption.

Formally, let i and t denote units and time periods. Exposure to the treatment is Wit = {0, 1}, and

Yit denotes the outcome. the synthetic control estimator selects weights ωsc
i to minimize the distance
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between treated and control units and estimates the treatment effect as

(
τ̂sc, µ̂, β̂

)
= arg min

µ,β,τ

{
∑

i
∑

t
(Yit − µ − βt − Witτ)

2 ω̂sc
i

}
, (B.7)

where τ̂sc
is the estimated treatment effect. The difference in differences estimator, by contrast, weights

all units in the same way, but it includes unit fixed effects to leverage within-unit variation:

(
τ̂did, µ̂, α̂, β̂

)
= arg min

µ,α,β,τ

{
∑

i
∑

t
(Yit − µ − αi − βt − Witτ)

2

}
. (B.8)

The synthetic difference-in-differences estimator nests these two approaches. First, it selects weights

ωsdid
i to minimize the distance between treated and control units in terms of pre-treatment outcome

values and characteristics. Moreover, it selects λdid
t that balance pre-exposure time periods with post-

exposure ones. Then, it solves for the average treatment effect as in the DiD estimator, applying the

so-computed weights:

(
τ̂sdid, µ̂, α̂, β̂

)
= arg min

µ,α,β,τ

{
∑

i
∑

t
(Yit − µ − αi − βt − Witτ)

2 ω̂sdid
i λ̂sdid

t

}
. (B.9)

By weighting observations to minimize the distance between treated and control units, the SDiD

estimator emphasizes units that are, on average, similar to the treated unit and periods that are, on

average, similar to the target periods.

In our application, we compute the SDiD weights by including the population, share of whites and

foreign-born, employment shares by occupation, and employment shares by industry. As in the syn-

thetic control baseline case, these variables were measured in the 1870 census, before the Chicago and

Boston fires.

We display the SDiD results in terms of standard panel event-study estimates to visualize the evolu-

tion of treatment effects over time. In addition, by looking at the pre-treatment differences between

the treated (Chicago and Boston) and control units, we can assess the empirical plausibility of the

parallel trends assumption. We follow the logic outlined in Clarke, Pailañir, Athey and Imbens (2023)

to construct these figures. We wish to estimate, for each period t,

(ȲT
t − ȲC

t )− (ȲT
0 − ȲC

0 ), (B.10)

where ȲT
t and ȲC

t denote the average outcome for treated and control units at time t, and ȲT
0 and ȲC

0

denote the average pre-treatment outcome values for treated and control units. These are computed
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as

ȲT
0 =

τ−1

∑
t=1

λ̂sdid
t ȲT

t , (B.11)

for the treatment group and, similarly, as

ȲC
0 =

τ−1

∑
t=1

λ̂sdid
t ȲC

t , (B.12)

for the control group. The term τ denotes the treatment period. To compute the confidence intervals,

we apply block-bootstrap resamples with 100 replications.

We display SDiD estimates for all the results shown in the main text. Figure C.4 displays the ef-

fect of the Great Chicago (Figure C.4a) and Boston (Figure C.4b) Fires on construction innovation.

Figure C.10 focuses on the effect of the Chicago Fire on non-wood-related (Figure C.10a) and wood-

related (Figure C.10b) patenting. Figure C.9 displays the results on historical landmarks. Analogously,

we report the SDiD estimates on construction manufacturing (Figure C.8), as well as non-wood con-

struction manufacturing (Figure C.12).

In all cases, the synthetic DiD estimates confirm the baseline results obtained through the more tradi-

tional synthetic control approach. Additionally, in most cases, the pre-treatment differences between

treated and control units are statistically insignificant and are always quantitatively very small. These

patterns confirm the empirical plausibility of the parallel trends assumption that requires that, in the

absence of the Fires, the outcomes in Chicago and Boston and in the control units would have evolved

similarly.
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C ADDITIONAL FIGURES

Figure C.1. Comparison of Own and External Patent Repositories
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Notes. This Figure compares the number of patents in the dataset produced for this paper and data from Petralia et al.

(2016) and Sarada et al. (2019). Panel C.1a reports the total number of patents in our data (red line), Petralia et al. (2016)

(gray dashed line), and Sarada et al. (2019) (gray dotted line). Panel C.1b reports the coverage rate, computed as the ratio

between the number of patents in our dataset and the number of patents in Petralia et al. (2016) (red line) and Sarada et

al. (2019) (gray dashed line). The dataset by Sarada et al. (2019) starts in 1870; for comparability, we restrict it to “Utility”

patents only. Referenced on page: A3.
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Figure C.2. Example of Metropolitan Area: Chicago

Notes. This Figure displays the construction of the Chicago Metropolitan Area according to the procedure described in

Section II.E. Each dot reports the coordinates of a single CPP location in Cook County, whose 1870 borders are displayed

in the black solid line. The red star displays the location of Chicago, which is the only CPP location with more than 20,000

inhabitants in Cook County. The red dots are the minor towns—i.e., the CPP locations with less than 20,000 inhabitants—

that are closer than 20 kilometers from the center of Chicago and thus are considered part of the Chicago Metropolitan Area.

In this case, the Chicago Metropolitan Area includes Evanston, Lakeview, Jefferson, Cicero, Lyons, Lake, Hyde Park, and

Calumet. The blue dots are towns below 20,000 inhabitants that are further than 20 kilometers from the center of Chicago

and are thus excluded from its metropolitan area. Referenced on page: 12.
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Figure C.3. Synthetic Control Estimates of the Effect of the Great Chicago Fire on Construc-

tion Innovation: Novel Patents
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(b) Non-Wood Construction Patents
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(c) Wood Construction Patents
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Notes. This Figure reports the effect of the Great Chicago Fire (1871) on construction innovation in Chicago. The dependent

variable is the number of patents in the top 20% of the novelty distribution of the text-based novelty measured developed

by Kelly et al. (2021). The unit of observation is a metropolitan area at a yearly frequency between 1853 and 1900. In Panel

C.3a, we look at construction patents; Panel C.3b reports the effect on non-wood construction patents. In Panel C.3c, we

report the effect on wood construction patents. The black dashed line marks the year of the Great Chicago Fire (1871). The

red line refers to Chicago; the dashed gray line refers to the synthetic control. Referenced on pages: 17, 23, B8.
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Figure C.4. Synthetic Difference-in-Differences Estimates of the Effect of the Great Chicago

and Boston Fires on Construction Innovation
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Notes. This Figure reports the effect of the Great Chicago (1871) and Boston (1872) Fires on construction innovation in

Chicago (Panel C.4a) and Boston (Panel C.4b). The dependent variable is the number of patents in construction. The

unit of observation is a metropolitan area at a yearly frequency between 1853 and 1900. The Figures report event-study

coefficients obtained using the synthetic difference-in-differences methods developed by Arkhangelsky et al. (2021) and

obtained following the procedure described in Clarke et al. (2023). Standard errors are estimated using bootstrap sampling

with 100 replications; gray bars report 95% confidence intervals. The covariates included in the synthetic difference-in-

differences estimation are the same as in the synthetic control estimation, except for the pre-treatment outcome values. The

black dashed line marks the year of the Great Chicago Fire (1871), the Chicago Municipality Ordinance prohibiting wood

construction (1874), and the Great Boston Fire (1872). Referenced on pages: 18, 27, B10.
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Figure C.5. Synthetic Control Estimates of the Effect of the Great Chicago Fire on Patenting

per Capita
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Notes. This Figure reports the effect of the Great Chicago Fire (1871) on construction innovation in Chicago. The dependent

variable is the number of patents in construction (Panel C.5a), non-wood construction (Panel C.5b), and wood construction

(Panel C.5c). Patenting activity is normalized by each metropolitan area’s total employment in the decade, as measured

in the population census, and is expressed in percentage terms. The unit of observation is a metropolitan area at a yearly

frequency between 1853 and 1900. The black dashed line marks the year of the Great Chicago Fire (1871). The red line refers

to Chicago; the dashed gray line refers to the synthetic control. Referenced on pages: 19, 23.
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Figure C.6. Construction Manufacturing: Pre-Post Great Chicago Fire Synthetic Control Root

Mean Squared Prediction Error Comparison
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(c) Fixed Capital
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Notes. This Figure reports the impact of the Great Chicago (1871) on construction manufacturing activity as measured in the

Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The dependent

variable is: in Panel C.6a, the number of establishments; in Panel C.6b, production value; in Panel C.6c, fixed capital; in

Panel C.6d, the cost of materials; in Panel C.6e, the cost of labor. Each figure reports the ratio between the post-Fire and

pre-Fire mean squared prediction error across counties and highlights Cook County (IL) in red. The sample includes all

counties with at least one metropolitan area. Referenced on page: 20.
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Figure C.7. Synthetic Control Estimates of the Effect of the Great Chicago Fire on Manufac-

turing: Industry-by-Industry Estimates
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(d) Material Costs
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Notes. This Figure reports the impact of the Great Chicago Fire (1871) on manufacturing activity as measured in the Census

of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The dependent variable

is: in Panel C.7a, the number of establishments; in Panel C.7b, production value; in Panel C.7c, the cost of labor; in Panel

C.7d, the cost of materials; in Panel C.7e, fixed capital. Each dot plots the treatment effect—i.e., the difference between

Chicago and the synthetic control in 1880—by industry. Construction is displayed in red; all other sectors are displayed in

gray. The sample includes all counties with at least one metropolitan area. Referenced on page: 20.
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Figure C.8. Synthetic Difference-in-Differences Estimates of the Effect of the Great Chicago

Fire on Construction Manufacturing
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Notes. This Figure reports the impact of the Great Chicago Fire (1871) on construction manufacturing activity as measured

in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The

dependent variable is: in Panel C.8a, the number of establishments; in Panel C.8b, production value; in Panel C.8c, the

cost of labor; in Panel C.8d, the cost of materials; in Panel C.8e, fixed capital. The Figures report event-study coefficients

obtained using the synthetic difference-in-differences methods developed by Arkhangelsky et al. (2021) and obtained fol-

lowing the procedure described in Clarke et al. (2023). Standard errors are estimated using bootstrap sampling with 100

replications; gray bars report 95% confidence intervals. The sample includes all counties with at least one metropolitan

area. Referenced on pages: 21, B10.

C18



Figure C.9. Synthetic Difference-in-Differences Estimates of the Effect of the Great Chicago

Fire on Historical Landmarks

(a) All Landmarks

Great Chicago →
Fire (1871)

← Municipality
Ordinance (1874)

0

20

40

60

# 
A

ll 
La

nd
m

ar
ks

1851-1860 1861-1870 1871-1880 1881-1890 1891-1900

Decade

(b) Architectural

Landmarks

Great Chicago →
Fire (1871)

← Municipality
Ordinance (1874)

0

10

20

30

# 
A

rc
hi

te
ct

ur
al

 L
an

dm
ar

ks

1851-1860 1861-1870 1871-1880 1881-1890 1891-1900

Decade

(c) Non-Architectural

Landmarks

Great Chicago →
Fire (1871)

← Municipality
Ordinance (1874)

0

10

20

30

# 
N

on
-A

rc
hi

te
ct

ur
al

 L
an

dm
ar

ks

1851-1860 1861-1870 1871-1880 1881-1890 1891-1900

Decade

Notes. This Figure reports the effect of the Great Chicago Fire (1871) on historical landmarks in Chicago. The depen-

dent variable is the number of all historical landmark buildings (Panel C.9a), those listed due to architectural significance

(Panel C.9b), and all other significant buildings (Panel C.9c). The unit of observation is a metropolitan area at a decade

frequency between 1850 and 1900. The Figures report event-study coefficients obtained using the synthetic difference-in-

differences methods developed by Arkhangelsky et al. (2021) and obtained following the procedure described in Clarke et

al. (2023). Standard errors are estimated using bootstrap sampling with 100 replications; gray bars report 95% confidence

intervals. Referenced on pages: 22, B10.
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Figure C.10. Synthetic Difference-in-Differences Estimates of the Effect of the Great Chicago

Fire on Wood and Non-Wood Construction Innovation
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Notes. This Figure reports the effect of the Great Chicago Fire (1871) on innovation in non-wood (Panel C.10a) and wood

(Panel C.10b) technologies. The dependent variable is the number of patents in either class. The unit of observation is

a metropolitan area at a yearly frequency between 1853 and 1900. The Figures report event-study coefficients obtained

using the synthetic difference-in-differences methods developed by Arkhangelsky et al. (2021) and obtained following the

procedure described in Clarke et al. (2023). Standard errors are estimated using bootstrap sampling with 100 replications;

gray bars report 95% confidence intervals. The covariates included in the synthetic difference-in-differences estimation

are the same as in the synthetic control estimation, except for the pre-treatment outcome values. The black dashed line

marks the year of the Great Chicago Fire (1871) and the Chicago Municipality Ordinance prohibiting wood construction

(1874). Referenced on pages: 23, B10.
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Figure C.11. Non-Wood Construction Manufacturing: Pre-Post Great Chicago Fire Synthetic

Control Root Mean Squared Prediction Error Comparison
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Notes. This Figure reports the impact of the Great Chicago (1871) on non-wood construction manufacturing activity as

measured in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and

1880. The dependent variable is: in Panel C.11a, the number of establishments; in Panel C.11b, production value; in Panel

C.11c, fixed capital; in Panel C.11d, the cost of materials; in Panel C.11e, the cost of labor. Each figure reports the ratio

between the post-Fire and pre-Fire mean squared prediction error across counties and highlights Cook County (IL) in red.

The sample includes all counties with at least one metropolitan area. Referenced on page: 24.
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Figure C.12. Synthetic Difference-in-Differences Estimates of the Effect of the Great Chicago

Fire on Non-Wood Manufacturing
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Notes. This Figure reports the impact of the Great Chicago Fire (1871) on non-wood manufacturing activity as measured

in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The

dependent variable is: in Panel C.12a, the number of establishments; in Panel C.12b, production value; in Panel C.12c, the

cost of labor; in Panel C.12d, the cost of materials; in Panel C.12e, fixed capital. The Figures report event-study coefficients

obtained using the synthetic difference-in-differences methods developed by Arkhangelsky et al. (2021) and obtained fol-

lowing the procedure described in Clarke et al. (2023). Standard errors are estimated using bootstrap sampling with 100

replications; gray bars report 95% confidence intervals. The sample includes all counties with at least one metropolitan

area. Referenced on pages: 24, B10.
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Figure C.13. Land Values in Chicago and Boston Before and After the Fires

(a) Chicago
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Notes. This Figure reports the average land values per square mile in Chicago (Panel C.13a and Boston (Panel C.13b) before

and after the 1871 and 1872 fires, respectively. Data for Chicago are digitized from Hoyt (1933), while data for Boston are

from Hornbeck and Keniston (2017). In each panel, the red line reports land values in areas exposed to the fires, and the

gray lines report average land values for the remaining parts of the city. Bands report one-standard-deviation intervals

around the mean. Referenced on page: 26.
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D ADDITIONAL TABLES

Table D.1. List of Words Related to Construction, Wood-Related, and Non-Wood-Related

Patents

Words related to...

Construction

Wood-Related

Construction

Non-wood Related

Construction

(1) (2) (3)

Construction Wood Iron

Building Timber Brick

Edifice Beam Ston

Frame Joist Mortar

Roof Mortise Concrete

Wall Tenon Steel

Floor Plank Cast

Ceiling Bracing Lime

Joist Joinery Terracotta

Pillar Lumber Cement

Foundation Plywood Glass

Footing Veneer

Slab

Stair

Staircase

Railing

Balustrade

Baluster

Fence

Gate

Door

Window

Sill

Lintel

Arch

Vault

Dome

Notes. This Table reports the keywords that we use to implement the dictionary-based approach to identify patents in

construction (column 1), wood-related construction (column 2), and non-wood-related construction (column 3). We flag a

patent as construction-related if the total number of mentions of words in column (1) is five or more. A wood-related (resp.

non-wood-related) patent is one that further mentions at least one word in column (2) (resp 3). Referenced on pages: 9, A4.
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Table D.2. List of Metropolitan Areas in the Sample

Metro Area City Metro Area City Metro Area City

(1) (2) (3) (4) (5) (6)

Albany Albany Albany Bethlehem Albany Coeymans

Albany Greenbush Albany Guilderland Albany New Baltimore

Albany New Scotland Albany Niskayuna Albany Schodack

Allegheny Allegheny Allegheny Bellevue Allegheny Chartiers

Allegheny Dixmont Allegheny Green Tree Allegheny Kilbuck

Allegheny Marshall Allegheny Mccandless Allegheny Mount

Washington

Allegheny Neville Allegheny Ohio Allegheny Peters

Allegheny Pine Allegheny Richland Allegheny Ross

Allegheny Scott Allegheny South Fayette Allegheny Stowe

Allegheny Upper Saint

Clair

Allegheny Wexford

Atlanta Atlanta Atlanta Clayton Atlanta Decatur

Atlanta Dekalb Atlanta Panthersville

Augusta Augusta Augusta Hamburg Augusta Richmond

Factory Pond

Baltimore Baltimore Baltimore Baltimore Zoo Baltimore Brooklandville

Baltimore Brooklyn Baltimore Catonsville Baltimore Cockeysville

Baltimore Lutherville Baltimore Saint Denis Baltimore Texas

Baltimore Warren

Boston Boston Boston Braintree Boston Milton

Boston Quincy Boston Randolph Boston Stoughton

Boston Weymouth

Brooklyn Brooklyn Brooklyn College Point Brooklyn Columbusville

Brooklyn Flatbush Brooklyn Flatlands Brooklyn Flushing

Brooklyn Gravesend Brooklyn Jamaica Brooklyn New Lots

Brooklyn New Utrecht Brooklyn Westchester Brooklyn Whitestone

Buffalo Amherst Buffalo Buffalo Buffalo Cheektowaga

Buffalo Eden Buffalo Grand Island Buffalo Hamburg

Buffalo Tonawanda Buffalo West Seneca Buffalo Wheatfield

Buffalo Williamsville

Camden Blackwood Camden Camden Camden Cinnaminson

Camden Deptford Camden Gloucester Camden Gloucester City

Camden Haddon Camden Haddonfield Camden Harrison

Camden Mantua Camden Merchantville Camden Washington

Camden Woodbury

Charleston Charleston Charleston James Island Charleston Johns Island

Charleston Saint Andrews

Charlestown Charlestown Charlestown Chelsea Charlestown East Boston

Charlestown Everett Charlestown Malden Charlestown Melrose
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Charlestown Wakefield

Chatham Chatham Chatham Whitmell

Chicago Calumet Chicago Chicago Chicago Cicero

Chicago Evanston Chicago Hyde Park Chicago Jefferson

Chicago Lake Chicago Lakeview Chicago Lyons

Cincinnati Bromley Cincinnati Cincinnati Cincinnati Colerain

Cincinnati Cumminsville Cincinnati Delhi Cincinnati Glendale

Cincinnati Green Cincinnati Ludlow Cincinnati Millcreek

Cincinnati Springdale Cincinnati Springfield Cincinnati Taylorsport

Cincinnati West Covington

Cleveland Bedford Cleveland Brecksville Cleveland Brooklyn

Cleveland Cleveland Cleveland East Cleveland Cleveland Independence

Cleveland Newburg Cleveland Parma Cleveland Rockport

Cleveland Royalton

Columbus Blendon Columbus Clinton Columbus Columbus

Columbus Franklin Columbus Groveport Columbus Hamilton

Columbus Harrison Columbus Jackson Columbus Madison

Columbus Mifflin Columbus Norwich Columbus Orange

Columbus Perry Columbus Scioto Columbus Sharon

Columbus Truro Columbus Westerville

Covington Alexandria Covington Anderson Covington Bank Lick

Covington Cold Spring Covington Columbia Covington Covington

Covington Dayton Covington Florence Covington Independence

Covington Johns Hill Covington Kenton Covington Newport

Covington Pendleton Covington Scott Covington Visalia

Davenport Andalusia Davenport Blackhawk Davenport Bowling

Davenport Buffalo Davenport Butler Davenport Coal Valley

Davenport Davenport Davenport Hampton Davenport Lincoln

Davenport Moline Davenport Pleasant Valley Davenport Preemption

Davenport Rock Island Davenport Rockingham Davenport Sheridan

Davenport Winfield

Dayton Bath Dayton Beavercreek Dayton Bellbrook

Dayton Bethel Dayton Brandt Dayton Butler

Dayton Clear Creek Dayton Dayton Dayton Harrison

Dayton Jefferson Dayton Mad River Dayton Madison

Dayton Miami Dayton Miamisburg Dayton Monroe

Dayton Randolph Dayton Sugarcreek Dayton Vandalia

Dayton Washington Dayton Wayne Dayton West Charleston

Detroit Dearborn Detroit Detroit Detroit Ecorse

Detroit Fort Wayne Detroit Grosse Pointe Detroit Hamtramck

Detroit Roseville Detroit Royal Oak Detroit Springwells

Detroit Warren Detroit Wyandotte

Edgefield Edgefield Edgefield Fruit Hill Edgefield Johnston

Edgefield Meeting Street
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Elizabeth Clark Elizabeth Elizabeth Elizabeth Keyport

Elizabeth Linden Elizabeth Livingston Elizabeth Millburn

Elizabeth New Dorp Elizabeth New Springville Elizabeth Perth Amboy

Elizabeth Port Richmond Elizabeth Rahway Elizabeth Richmond

Elizabeth South Amboy Elizabeth South Orange Elizabeth Springfield

Elizabeth Summit Elizabeth Tottenville Elizabeth Westfield

Elizabeth Woodbridge

Eufaula Eufaula Eufaula Georgetown

Evansville Armstrong Evansville Campbell Evansville Center

Evansville Evansville Evansville German Evansville Henderson

Evansville Knight Evansville Ohio Evansville Perry

Evansville Pigeon Evansville Scott Evansville Spottsville

Evansville Union

Fall River Berkley Fall River Bristol Fall River Dighton

Fall River Fall River Fall River Little Compton Fall River Middletown

Fall River Portsmouth Fall River Rehoboth Fall River Somerset

Fall River Swansea Fall River Taunton Fall River Tiverton

Fall River Warren Fall River Westport

Harrisburg Dauphin Harrisburg Duncannon Harrisburg East Pennsboro

Harrisburg Fairview Harrisburg Goldsboro Harrisburg Halifax

Harrisburg Hampden Harrisburg Harrisburg Harrisburg Highspire

Harrisburg Hummelstown Harrisburg Lewisberry Harrisburg Lower Allen

Harrisburg Lower Paxton Harrisburg Lower Swatara Harrisburg Marysville

Harrisburg Mechanicsburg Harrisburg Middle Paxton Harrisburg Middletown

Harrisburg Monaghan Harrisburg New Buffalo Harrisburg New

Cumberland

Harrisburg Newberry Harrisburg Penn Harrisburg Reed

Harrisburg Rockville Harrisburg Rye Harrisburg Silver Spring

Harrisburg South Hanover Harrisburg Susquehanna Harrisburg Upper Allen

Harrisburg Warrington Harrisburg Watts Harrisburg West Hanover

Hartford Avon Hartford Berlin Hartford Bloomfield

Hartford Cromwell Hartford East Granby Hartford East Hartford

Hartford East Windsor

Hill

Hartford Farmington Hartford Glastonbury

Hartford Granby Hartford Hartford Hartford Manchester

Hartford Middletown Hartford New Britain Hartford Portland

Hartford Rocky Hill Hartford Simsbury Hartford South Windsor

Hartford West Hartford Hartford Wethersfield Hartford Windsor

Hoboken Hackensack Hoboken Hoboken Hoboken North Bergen

Hoboken Weehawken

Indianapolis Allisonville Indianapolis Carmel Indianapolis Center

Indianapolis Clay Indianapolis Decatur Indianapolis Eagle

Indianapolis Franklin Indianapolis Indianapolis Indianapolis Lawrence

Indianapolis Millersville Indianapolis Perry Indianapolis Pike
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Indianapolis Pleasant Indianapolis Warren Indianapolis Washington

Indianapolis Wayne Indianapolis White River

Jersey City Bayonne Jersey City Greenville Jersey City Jersey City

Jersey City New Brighton Jersey City Rutherford Park Jersey City Tompkinsville

Kansas City Gallatin Kansas City Independence Kansas City Kansas City

Kansas City Pettis Kansas City Quindaro Kansas City Shawnee

Kansas City Westport

Knoxville Beaver Ridge Knoxville Knoxville Knoxville Louisville

Knoxville Maryville Knoxville Rockford

Lancaster Clay Lancaster Conestoga Lancaster East Hempfield

Lancaster East Lampeter Lancaster Eden Lancaster Elizabeth

Lancaster Ephrata Lancaster Lancaster Lancaster Leacock

Lancaster Manheim Lancaster Manor Lancaster Martic

Lancaster Millersville Lancaster New Providence Lancaster Paradise

Lancaster Penn Lancaster Pequea Lancaster Rapho

Lancaster Strasburg Lancaster Upper Leacock Lancaster Warwick

Lancaster West Earl Lancaster West Hempfield Lancaster West Lampeter

Lawrence Andover Lawrence Atkinson Lawrence Bradford

Lawrence Danville Lawrence Georgetown Lawrence Groveland

Lawrence Hampstead Lawrence Haverhill Lawrence Lawrence

Lawrence Methuen Lawrence Newton Lawrence North Andover

Lawrence North Reading Lawrence Plaistow Lawrence Salem

Lawrence Sandown Lawrence Wilmington

Louisville Carr Louisville Charlestown Louisville Franklin

Louisville Harrods Creek Louisville Jeffersonville Louisville Lafayette

Louisville Louisville Louisville New Albany Louisville Newburg

Louisville Saint Matthews Louisville Shively Louisville Silver Creek

Louisville Springdale Louisville Union Louisville Utica

Louisville nan

Lowell Acton Lowell Bedford Lowell Billerica

Lowell Carlisle Lowell Chelmsford Lowell Concord

Lowell Dracut Lowell Dunstable Lowell Hudson

Lowell Lincoln Lowell Lowell Lowell Pelham

Lowell Tewksbury Lowell Tyngsborough Lowell Westford

Lowell Windham

Lynchburg Amherst Lynchburg Brookville Lynchburg Coolwell

Lynchburg Elon Lynchburg Forest Lynchburg Lynchburg

Lynchburg New London

Lynn Hingham Lynn Hull Lynn Lynn

Lynn Lynnfield Lynn Middleton Lynn Nahant

Lynn Saugus Lynn Swampscott Lynn Winthrop

Macon Clinton Macon Macon

Manchester Allenstown Manchester Auburn Manchester Bedford

Manchester Bow Manchester Concord Manchester Derry
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Manchester Dunbarton Manchester Goffstown Manchester Hooksett

Manchester Litchfield Manchester Londonderry Manchester Manchester

Manchester Merrimack Manchester Nashua Manchester Pembroke

Marion Marion Marion Perry

Memphis Cuba Memphis Desoto Memphis Hopefield

Memphis Horn Lake Memphis Memphis

Milwaukee Caledonia Milwaukee Franklin Milwaukee Granville

Milwaukee Greenfield Milwaukee Lake Milwaukee Mequon

Milwaukee Milwaukee Milwaukee Oak Creek Milwaukee Wauwatosa

Montgomery Autauga Montgomery Elmore Montgomery Montgomery

Montgomery Prattville Montgomery Wetumpka

Nashville Brentwood Nashville Goodlettsville Nashville Madison

Nashville Nashville

New Bedford Acushnet New Bedford Dartmouth New Bedford Fairhaven

New Bedford Freetown New Bedford Gosnold New Bedford Lakeville

New Bedford Marion New Bedford Mattapoisett New Bedford New Bedford

New Bedford Rochester

New Haven Ansonia New Haven Bethany New Haven Branford

New Haven Cheshire New Haven Derby New Haven East Haven

New Haven Hamden New Haven Milford New Haven New Haven

New Haven North Branford New Haven North Haven New Haven Orange

New Haven Prospect New Haven Seymour New Haven Wallingford

New Haven West Haven New Haven Woodbridge

New Orleans Carrollton New Orleans Kenner New Orleans Metairie

New Orleans New Orleans New Orleans Shrewsbury

New York Astoria New York Belmont New York Fordham

New York Long Island City New York Morrisania New York New York

New York Tremont New York West Farms

Newark Belleville Newark Bloomfield Newark East Orange

Newark Harrison Newark Kearny Newark Montclair

Newark Newark Newark Orange Newark West Orange

Newburgh Cold Spring Newburgh Cornwall Newburgh Fishkill

Newburgh Fishkill Landing Newburgh Glenham Newburgh New Windsor

Newburgh Newburgh Newburgh Philipstown Newburgh Plattekill

Newburgh West Point

Norfolk Deep Creek Norfolk Fort Monroe Norfolk Great Bridge

Norfolk Hampton Norfolk Kempsville Norfolk Norfolk

Norfolk Old Point

Comfort Marina

Norfolk Portsmouth Norfolk Tanner Creek

Norfolk Western Branch

Park

Norfolk Wythe

North

Providence

Bellingham North

Providence

Blackstone North

Providence

Cumberland
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North

Providence

Johnston North

Providence

North

Providence

North

Providence

Scituate

North

Providence

Smithfield North

Providence

Woonsocket

Old Cambridge Arlington Old Cambridge Belmont Old Cambridge Brighton

Old Cambridge Brookline Old Cambridge Burlington Old Cambridge Canton

Old Cambridge Dedham Old Cambridge Hyde Park Old Cambridge Lexington

Old Cambridge Medford Old Cambridge Needham Old Cambridge Newton

Old Cambridge Old Cambridge Old Cambridge Reading Old Cambridge Somerville

Old Cambridge Stoneham Old Cambridge Waltham Old Cambridge Watertown

Old Cambridge West Roxbury Old Cambridge Winchester Old Cambridge Woburn

Oswego Fulton Oswego Granby Oswego Hannibal

Oswego Ira Oswego Martville Oswego Oswego

Oswego Scriba Oswego Sterling Oswego Sterling Valley

Oswego Volney

Paterson Caldwell Paterson Clinton Paterson Hohokus

Paterson Little Falls Paterson Lodi Paterson Passaic

Paterson Paterson Paterson Pequannock Paterson Pompton

Paterson Ramapo Paterson Ramsey Paterson Saddle River

Paterson Washington Paterson Wayne

Peoria Akron Peoria Cincinnati Peoria Dillon

Peoria Elm Grove Peoria Fondulac Peoria Groveland

Peoria Hallock Peoria Hollis Peoria Kickapoo

Peoria Limestone Peoria Medina Peoria Morton

Peoria Pekin Peoria Peoria Peoria Radnor

Peoria Richwoods Peoria Spring Bay Peoria Tremont

Peoria Worth

Philadelphia Abington Philadelphia Cheltenham Philadelphia Conshohocken

Philadelphia Darby Philadelphia Greenwich Philadelphia Haverford

Philadelphia Horsham Philadelphia Lower Merion Philadelphia Oreland

Philadelphia Philadelphia Philadelphia Ridley Philadelphia Springfield

Philadelphia Springfield Philadelphia Tinicum Philadelphia Upper Darby

Philadelphia Upper Dublin Philadelphia Whitemarsh

Pittsburgh Allentown Pittsburgh Baldwin Pittsburgh Braddock

Pittsburgh East Pittsburgh Pittsburgh Elizabeth Pittsburgh Etna

Pittsburgh Hampton Pittsburgh Indiana Pittsburgh Lincoln

Pittsburgh Mckeesport Pittsburgh Mifflin Pittsburgh Millvale

Pittsburgh Pittsburgh Pittsburgh Reserve Pittsburgh Shaler

Pittsburgh Sharpsburg Pittsburgh Snowden Pittsburgh Surgeon Hall

Pittsburgh Union Pittsburgh West Elizabeth Pittsburgh Wilkins

Portland Cape Elizabeth Portland Cumberland Portland Falmouth

Portland Gray Portland North Yarmouth Portland Portland

Portland Scarborough Portland Westbrook Portland Yarmouth

Poughkeepsie Clinton Poughkeepsie East Fishkill Poughkeepsie Esopus
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Poughkeepsie Fishkill Plains Poughkeepsie Hyde Park Poughkeepsie La Grange

Poughkeepsie Lloyd Poughkeepsie Marlborough Poughkeepsie New Paltz

Poughkeepsie Pleasant Valley Poughkeepsie Port Ewen Poughkeepsie Poughkeepsie

Poughkeepsie Rhinebeck Poughkeepsie Rondout Poughkeepsie Sleightsburg

Poughkeepsie Wappingers

Falls

Providence Attleboro Providence Barrington Providence Cranston

Providence East Greenwich Providence East Providence Providence Pawtucket

Providence Providence Providence Seekonk Providence Warwick

Quincy Burton Quincy Ellington Quincy Fabius

Quincy Fall Creek Quincy La Grange Quincy Liberty

Quincy Melrose Quincy Mendon Quincy Miller

Quincy Palmyra Quincy Quincy Quincy South River

Quincy Ursa

Reading Adamstown Reading Alsace Reading Bern

Reading Brecknock Reading Brecknock Reading Caernarvon

Reading Caernarvon Reading Centre Reading Cumru

Reading Exeter Reading Hamburg Reading Maiden Creek

Reading Muhlenberg Reading Oley Reading Ontelaunee

Reading Penn Reading Perry Reading Reading

Reading Richmond Reading Robeson Reading Ruscombmanor

Reading South

Heidelberg

Reading Spring Reading Union

Richmond Bermuda Richmond Brookland Richmond Chester

Richmond Chesterfield Richmond Clover Hill Richmond Dale

Richmond Fairfield Richmond Manchester Richmond Richmond

Richmond Tuckahoe Richmond Varina

Rochester Brighton Rochester Chili Rochester Gates

Rochester Greece Rochester Henrietta Rochester Honeoye Falls

Rochester Irondequoit Rochester Mendon Rochester Penfield

Rochester Pittsford Rochester Rochester Rochester Rush

Rochester Scottsville

Sacramento Brighton Sacramento Franklin Sacramento Fremont

Sacramento Sacramento

Saint Louis Brooklyn Saint Louis Carondelet Saint Louis Caseyville

Saint Louis Columbia Saint Louis East Saint Louis Saint Louis French

Saint Louis Gartside Saint Louis Madison Saint Louis Millstadt

Saint Louis Saint Ferdinand Saint Louis Saint Louis Saint Louis Venice

Saint Paul Centerville Saint Paul Cottage Grove Saint Paul Eagan

Saint Paul Inver Grove Saint Paul Mendota Saint Paul Minneapolis

Saint Paul Mounds View Saint Paul Newport Saint Paul Oakdale

Saint Paul Rosemount Saint Paul Roseville Saint Paul Saint Anthony

Saint Paul Saint Paul Saint Paul West Saint Paul Saint Paul White Bear

Saint Paul Woodbury
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Salem Beverly Salem Boxford Salem Danvers

Salem Essex Salem Hamilton Salem Ipswich

Salem Manchester Salem Marblehead Salem Peabody

Salem Rowley Salem Salem Salem Topsfield

Salem Wenham

San Francisco Alameda San Francisco Oakland San Francisco San Bruno

San Francisco San Francisco San Francisco San Pablo San Francisco Sausalito

Savannah Hardeeville Savannah Savannah Savannah Thunderbolt

Savannah White Bluff

Scranton Archbald Scranton Benton Scranton Blakely

Scranton Dunmore Scranton Exeter Scranton Greenfield

Scranton Hyde Park Scranton Jefferson Scranton Jenkins

Scranton North Abington Scranton Old Forge Scranton Olyphant

Scranton Pittston Scranton Ransom Scranton Scott

Scranton Scranton Scranton South Abington Scranton Spring Brook

Scranton Waverly Scranton West Pittston

Shreveport Bossier City Shreveport Shreveport

Springfield Agawam Springfield Chicopee Springfield Easthampton

Springfield Enfield Springfield Granby Springfield Hadley

Springfield Holyoke Springfield Longmeadow Springfield Ludlow

Springfield Northampton Springfield Somers Springfield South Hadley

Springfield Southampton Springfield Springfield Springfield Suffield

Springfield West Springfield Springfield Westfield Springfield Wilbraham

Springfield Windsor Locks

Syracuse Amboy Syracuse Belgium Syracuse Belleisle

Syracuse Brewerton Syracuse Camillus Syracuse Cardiff

Syracuse Caughdenoy Syracuse Central Square Syracuse Cicero

Syracuse Clay Syracuse Dewitt Syracuse Euclid

Syracuse Fayetteville Syracuse Geddes Syracuse Jamesville

Syracuse Lafayette Syracuse Liverpool Syracuse Manlius

Syracuse Navarino Syracuse Onondaga Syracuse Otisco

Syracuse Pompey Syracuse Salina Syracuse South Onondaga

Syracuse Syracuse Syracuse Threerivers Syracuse Van Buren

Toledo Bedford Toledo Erie Toledo Lake

Toledo Maumee Toledo Oregon Toledo Perrysburg

Toledo Sylvania Toledo Toledo Toledo Troy

Toledo Washington Toledo Webster Toledo Whiteford

Trenton Bordentown Trenton Bristol Trenton Burlington

Trenton Chesterfield Trenton Ewing Trenton Falls

Trenton Hamilton Trenton Hamilton Square Trenton Hopewell

Trenton Lawrence Trenton Lower

Makefield

Trenton Mansfield

Trenton Middletown Trenton Morrisville Trenton Mount Holly

Trenton Princeton Trenton Springfield Trenton Trenton
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Trenton West Windsor Trenton Westampton

Troy Brunswick Troy Clifton Park Troy Cohoes

Troy Green Island Troy Halfmoon Troy Lansingburgh

Troy Mechanicville Troy Nassau Troy North

Greenbush

Troy Poestenkill Troy Sand Lake Troy Schaghticoke

Troy Stillwater Troy Troy Troy Waterford

Troy Watervliet Troy West Sand Lake

Utica Bridgewater Utica Cassville Utica Clark Mills

Utica Clayville Utica Clinton Utica Deerfield

Utica Floyd Utica Frankfort Utica Gravesville

Utica Holland Patent Utica Kirkland Utica Litchfield

Utica Marcy Utica Marshall Utica New Hartford

Utica New York Mills Utica Oriskany Utica Paris

Utica Prospect Utica Remsen Utica Sauquoit

Utica Schuyler Utica South Trenton Utica Steuben

Notes. This Table reports the list of metropolitan areas (columns 1, 3, and 5) and all the cities below 20,000 inhabitants that

are part of them. There is a total of 84 metropolitan areas comprising 1,048 smaller towns. Referenced on page: 12.
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Table D.3. Synthetic Control Weights for Boston and Chicago

Metropolitan Area Synthetic Chicago Synthetic Boston

(1) (2) (3)

New Orleans 0.0 0.024

San Francisco 0.093 0.413

Cincinnati 0.0 0.112

Kansas City 0.02 0.0

New York 0.254 0.166

Jersey City 0.304 0.0

Springfield 0.0 0.008

Charlestown 0.328 0.277

Notes. This Table presents the weights assigned to the metropolitan areas listed in column (1) to construct the synthetic

Chicago (column 2) and Boston (column 3) control units. Weights are selected following a data-driven optimization algo-

rithm that minimizes the distance between the treated unit and the synthetic control in terms of a set of balancing variables.

The balancing variables are population, the share of men, the share of US-born, the share of literate, employment shares

by occupation, and employment shares by industry. Shares are expressed in terms of population. All balancing variables

are constructed from the 1870 population census. The weights are obtained by applying the synthetic control approach on

construction patenting. Referenced on page: 14.
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Table D.4. Comparison between Boston, the Other Metropolitan Areas, and Synthetic Boston

Boston All Other Cities Synthetic Boston

Mean Mean Difference Mean Difference

(1) (2) (3) (4) (5) (6) (7)

Panel A. Demographics
Literacy Rate (%) 70.645 60.780 9.865*** (1.685) 68.193 2.452 (1.739)

Imputed Income per Capita 893.628 707.792 185.837*** (14.929) 895.798 -2.170 (52.655)

Share of Whites (%) 98.886 85.715 13.171*** (2.443) 94.992 3.894 (2.684)

Share of Blacks (%) 1.110 14.023 -12.913*** (2.452) 1.697 -0.587 (1.079)

Share of Natives (%) 66.585 78.113 -11.528*** (1.475) 61.703 4.883 (7.343)

Panel B. Employment Share (%) by Occupation
Liberal Profession 1.412 1.029 0.383*** (0.032) 1.632 -0.220 (0.254)

Farmer 0.620 8.410 -7.790*** (0.970) 1.008 -0.388 (0.372)

Manager 2.768 1.977 0.791*** (0.082) 3.382 -0.615 (0.404)

Clerical Worker 1.373 0.650 0.723*** (0.037) 1.202 0.171*** (0.057)

Sales 3.063 1.363 1.700*** (0.071) 2.862 0.201 (0.284)

Skilled Manufacture 8.168 5.640 2.528*** (0.213) 7.884 0.284 (0.293)

Low-Skill Manufacture 9.904 7.200 2.704*** (0.583) 8.651 1.253*** (0.242)

Service 6.692 4.389 2.303*** (0.218) 6.360 0.331 (1.134)

Panel C. Employment Share (%) by Industry
Laborer 5.783 4.669 1.114*** (0.211) 6.055 -0.272 (0.712)

Agriculture 0.843 8.667 -7.824*** (0.965) 1.308 -0.465 (0.496)

Chemistry 0.092 0.078 0.014 (0.014) 0.187 -0.095 (0.124)

Construction 3.336 2.379 0.957*** (0.090) 3.201 0.136 (0.183)

Liberal Professions 10.275 6.597 3.678*** (0.245) 10.078 0.198 (1.578)

Metallurgy 0.730 0.766 -0.037 (0.066) 0.686 0.043 (0.051)

Public Administration 0.500 0.297 0.204*** (0.027) 0.673 -0.173 (0.144)

Textiles 0.918 1.949 -1.031** (0.460) 0.641 0.277 (0.240)

Trade 7.158 3.606 3.552*** (0.171) 6.789 0.369 (0.280)

Transports 3.048 1.991 1.057*** (0.099) 3.266 -0.218 (0.407)

Utilities 8.025 4.962 3.063*** (0.230) 7.679 0.346 (1.362)

Residual Industries 3.946 2.986 0.959*** (0.149) 4.145 -0.200 (0.172)

Engineering 0.528 0.386 0.142*** (0.032) 0.606 -0.078 (0.088)

Notes. This Table compares the values of the balancing variables included in the synthetic control design in Boston and

in the other metropolitan areas in the sample. Column (1) reports the average value of the various variables for Boston;

columns (2) and (5) report the average across all control cities and in synthetic Boston, respectively. The weights used to

compute the co-variates in the synthetic control are obtained by applying the synthetic control approach on construction

patenting. In columns (3–4) (resp. 6–7), we report the difference between Boston and all other cities (resp. synthetic Boston).

Robust standard errors are displayed in parentheses. All data are computed from the 1870 population census and expressed

in population percentage. Referenced on page: 15.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table D.5. Synthetic Control Estimates of the County-Level Impact of the Great Chicago Fire

on per Capita Manufacturing Activity

Dependent Variable

(Treated County - Synthetic Treated County)

(1) (2) (3) (4) (5)

# Estab-

lishments

Value of

Production

Fixed

Capital

Cost of

Materials

Cost of

Labor

Panel A. Construction Manufacturing
1860 (Pre-Fire) 0.000 3.247 -0.741 -1.726 -0.793

1870 (Pre-Fire) -0.001 -0.070 -3.776 -2.314 -0.355

1880 (Post-Fire) 0.065 3320.363 749.794 1836.556 904.345

Mean Dep. Var. (Before 1870) 0.118 2596.728 1314.480 870.335 930.620

Panel B. Non-Wood Manufacturing
1860 (Pre-Fire) 0.000 0.222 6.317 0.002 -0.118

1870 (Pre-Fire) 0.000 -0.727 6.214 -0.272 0.599

1880 (Post-Fire) 0.008 138.772 -23.062 11.504 120.543

Mean Dep. Var. (Before 1870) 0.015 425.407 255.699 74.280 219.966

Number of Counties 76 76 76 76 76

Number of Observations 228 228 228 228 228

Notes. This Table reports the impact of the Great Chicago (1871) Fire on construction and non-wood-related manufacturing

activity as measured in the Census of Manufacturing. The unit of observation is a county at a decade frequency between

1860 and 1880. The dependent variable is: in column (1), the number of establishments; in column (2), production value;

in column (3), fixed capital; in column (4), the cost of materials; in column (5), the cost of labor. Each dependent variable is

normalized by the county’s total employment, as measured in the population census, and expressed in percentage terms.

Each column reports the difference between the observed outcome in Cook County and a synthetic control constructed

using the baseline balancing variables and pre-treatment outcome values. The sample includes all counties with at least

one metropolitan area. The Table reports separately the effects on overall construction manufacturing (Panel A) and non-

wood construction manufacturing (Panel B). Referenced on pages: 19, 20, 24.
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Table D.6. Synthetic Control Estimates of the County-Level Estimates of the Impact of the

Great Chicago Fire on Wood Manufacturing

Dependent Variable

(Treated County - Synthetic Treated County)

(1) (2) (3) (4) (5)

# Estab-

lishments

Value of

Production

Fixed

Capital

Cost of

Materials

Cost of

Labor

1860 (Pre-Fire) 0.000 -38.942 -2.560 -31.377 -1.253

1870 (Pre-Fire) 1.300 313.823 96.100 239.464 25.101

1880 (Post-Fire) 0.400 360.009 9.851 317.960 18.798

Mean Dep. Var. (Before 1870) 2.000 358.670 104.075 269.963 40.599

Number of Counties 76 76 76 76 76

Number of Observations 228 228 228 228 228

Notes. This Table reports the impact of the Great Chicago (1871) Fire on wood-related manufacturing activity as measured

in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The

dependent variable is: in column (1), the number of establishments; in column (2), production value; in column (3), fixed

capital; in column (4), the cost of materials; in column (5), the cost of labor. Each column reports the difference between

the observed outcome in Cook County and a synthetic control constructed using the baseline balancing variables and pre-

treatment outcome values. The sample includes all counties with at least one metropolitan area. Referenced on page: 24.
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Table D.7. Synthetic Control Estimates of the County-Level Estimates of the Impact of the

Great Boston Fire on Wood Manufacturing

Dependent Variable

(Treated County - Synthetic Treated County)

(1) (2) (3) (4) (5)

# Estab-

lishments

Value of

Production

Fixed

Capital

Cost of

Materials

Cost of

Labor

Panel A. Construction Manufacturing
1860 (Pre-Fire) 0.000 17.223 -0.012 12.848 -0.002

1870 (Pre-Fire) -0.001 1.153 -0.041 0.799 -0.035

1880 (Post-Fire) -0.310 -174.464 -5.451 -154.345 -11.866

Mean Dep. Var. (Before 1870) 1.350 221.230 57.305 165.920 28.675

Number of Counties 76 76 76 76 76

Number of Observations 228 228 228 228 228

Notes. This Table reports the impact of the Great Boston (1872) Fire on wood-related manufacturing activity as measured

in the Census of Manufacturing. The unit of observation is a county at a decade frequency between 1860 and 1880. The

dependent variable is: in column (1), the number of establishments; in column (2), production value; in column (3), fixed

capital; in column (4), the cost of materials; in column (5), the cost of labor. Each column reports the difference between the

observed outcome in Suffolk County and a synthetic control constructed using the baseline balancing variables and pre-

treatment outcome values. The sample includes all counties with at least one metropolitan area. Referenced on page: 27.
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