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Abstract

The cross-country diffusion of technology is a central driver of productivity growth and

economic convergence. We document that international migration fosters technology trans-

fer from the destination to the origin country of migrants. We construct an individual-level

dataset linking four million British immigrants in the US over 1870–1940 to the UK census

and digitize the universe of British patents granted in the 19th century. Double- and triple-

difference designs and text analysis applied to patents reveal that migration ties enabled

the diffusion of US technology to the UK. Migrants’ social networks at home promoted

technology diffusion even when migrants did not return.
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I INTRODUCTION

The diffusion of new technologies across countries is a central driver of productivity growth and

economic convergence (Comin and Hobijn, 2010).
1

Eaton and Kortum (1999), for example, estimate

that 70% of productivity growth in Western Europe in the 1980s relied on technology developed in

the United States and Japan. In this paper, we study out-migration as a novel channel for technol-

ogy transfer from migrants’ destination countries to their countries of origin.
2

We refer to this phe-

nomenon as “return innovation.”

Out-migration is a widespread feature of economic development (Clemens, 2020). Since migrants

typically move to technologically advanced countries, they are ideally positioned to transfer tech-

nologies back to their sending regions, as documented qualitatively by Saxenian (2006). At the same

time, the “brain drain” resulting from out-migration may deplete human capital and hinder inno-

vation activities (Gibson and McKenzie, 2011). Despite this theoretical tension, existing studies have

predominantly focused on the impact of migrants on innovation in destination countries.
3

This gap

is motivated primarily by data constraints. Moving beyond cross-country analyses requires informa-

tion on where migrants settle within the receiving country and their origin area within the sending

country, but such data are seldom available.

To overcome this limitation, we link English and Welsh migrants in the US Census between 1850

and 1940 to their records in the UK Census.
4

This new dataset allows us to observe migrants’ origin

areas in the UK and their destinations in the US. Our main contribution is to show that higher US

emigration rates promoted UK innovation and increased the similarity between British and American

patents, especially in technological fields prevalent in the areas where migrants settled. About half of

this “return innovation” effect is driven by returnees. Migrants’ social networks, however, fostered

cross-border technology flows even in the absence of return migration. Our results uncover that out-

migration can act as a source of technology transfer to emigration countries.

1
Recent endogenous growth models include cross-country technology diffusion dynamics and quantify its implications for

economic growth (e.g., Alvarez, Buera and Lucas, 2018; Buera and Oberfield, 2020; Perla, Tonetti and Waugh, 2021).

2
This paper is therefore related to an important literature investigating the role of technology sourcing, trade, and foreign

direct investments as drivers of cross-country technology transfer (Keller, 2004).

3
Burchardi, Chaney, Hassan, Tarquinio and Terry (2020) and Bernstein, Diamond, Jiranaphawiboon, McQuade and Pousada

(2022) provide causal evidence that immigration benefits US innovation. Moser, Parsa and San (2020) document that fore-

gone immigration after the 1921 border closure hampered American innovation. Akcigit, Grigsby and Nicholas (2017a) and

Arkolakis, Lee and Peters (2020) show that historical immigration enabled the United States’ rise to the technology frontier.

4
Throughout the paper, we focus on England and Wales. With a slight abuse of language, we use the terms “Britain” and

“United Kingdom” (UK) as shortcuts to collectively refer to England and Wales.
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Between 1850 and 1940, a period known as the “Age of Mass Migration,” approximately 30 million

European migrants settled across the Atlantic. Nearly four million came from England and Wales.

Over this period, the US reached the technology frontier in many industries, from engines to agricul-

tural machinery (David, 1966; Rosenberg, 1970).
5

In this paper, we document that migration networks

promoted the diffusion of these technologies back to Britain, the cradle of the Industrial Revolution.

We assemble two novel general-purpose datasets to overcome the limitations of existing sources. First,

the available data do not contain information on the origin of British immigrants in the US beyond

their country of origin. We thus use confidential individual-level UK and US census data to link the

records of British immigrants in the US to the UK census (Schurer and Higgs, 2020; Ruggles, Fitch,

Goeken, Hacker, Nelson, Roberts, Schouweiler and Sobek, 2021). This dataset enables us to track

individual migration between the UK and the US, as well as return migration. Second, to reconstruct

the geography of innovation in the UK in the second half of the nineteenth century, we digitized all

300,000 original patent documents issued in England and Wales between 1853 and 1899. This dataset

allows us to cover the universe of patents granted over nearly a century, from 1853 to 1940.

We construct two measures of exposure to US technology through migration ties. First, we look at the

number of US emigrants across UK districts.
6

The simple rationale is that a larger emigrant commu-

nity is more likely to be exposed to innovation and transmit it back to the UK. Second, we leverage

joint variation in county-level specialization across technology classes in the United States and mi-

gration flows between UK districts and US counties to construct a technology-specific indicator of

“knowledge exposure.” In this case, exposure to US innovation is higher for UK districts with larger

overseas emigrant communities who settle in counties that are more innovative in specific technolo-

gies.

Identifying the impact of migrants’ exposure to US technology on innovation in the UK presents one

key challenge: assortative matching. British migrants could sort across US counties in ways that are

correlated with both the innovation of their district of origin and that of their county of destination.

To address this challenge, we isolate sudden increases in patenting activity—innovation “shocks”—

5
By the 1890s, the American technological primacy was well established. Nelson and Wright (1992) note that, starting in the

1880s, American technology saw major advances in textiles, sewing machines, clocks, firearms, boots and shoes, locomo-

tives, bicycles, and cigarettes. From the 1890s, mass production led to innovations in consumer products (canned goods,

dairy, and grain products), light machinery (typewriters, cameras), electrical equipment, and industrial machinery such as

boilers, pumps, and printing presses.

6
Our core units of observation are UK registration districts and US counties. In 1901, there were 631 registration districts

in England and Wales. Districts were comparable to US counties in population (approximately 40,000). Unlike counties,

however, registration districts were statistical entities without political or budgetary autonomy.
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in US counties and county-technology pairs. Using predetermined migration flows, we classify UK

districts as “treated” if a relatively large number of their emigrants had settled in US areas experi-

encing these shocks. The key insight is that unexpected innovation shocks provide plausibly exoge-

nous variation in UK districts’ exposure to US technology via pre-existing migration linkages. Using

double- and triple-difference regressions, we compare innovation outcomes across exposed and un-

exposed districts and technologies, before and after these shocks, to estimate how US technology

shocks diffused into the UK through migration ties. The validity of this approach rests on a standard

parallel trends assumption: in the absence of innovation shocks, treated and untreated units would

have followed similar innovation trajectories. The event-study estimates provide consistent evidence

supporting this assumption.

The main finding of this paper, which we label “return innovation,” is that technological change in

the UK is affected by exposure to US innovation through out-migration linkages. First, we document

an increase in total patenting in districts with more US emigrants: moving from the 25th to the 75th

percentile of US out-migration is associated with an 8% increase in the number of patents produced

in the United Kingdom. Second, districts increase their innovation activity in the technological fields

to which emigrants are exposed in the United States. Using our index based on joint variation in the

location where emigrants settle and the innovation they are exposed to, we find that moving from the

25th to the 75th percentile of the “knowledge exposure” variable is associated with an 11% increase in

innovation activity. Third, we adopt a text-analysis methodology that computes the textual similarity

between UK and US patents to measure the transfer of innovation generated by migration ties. We

find that patenting in districts with more US emigrants becomes more similar to US patents: moving

from the 25th to the 75th percentile of emigration to the US is associated with UK patents that are

twice as similar to American ones. This pattern also holds within technological fields.

In the double differences regression, innovation in districts exposed to a US innovation shock through

migration ties increases by 9%. A back-of-the-envelope calculation suggests that migration ties gen-

erate a 15% pass-through rate of innovation shocks from the United States into the United Kingdom.

In exposed districts, patents become substantially more similar in their textual content to American

patents. We construct the text-based measure of patent “impact” developed by Kelly, Papanikolaou,

Seru and Taddy (2021) for British patents and find that exposure to US technology further promoted

the production of high-impact innovation in the years following the innovation shocks. These re-

sults also hold in the triple differences framework, which leverages shocks to US innovation activity

across counties and technologies. A key advantage of the triple differences approach is that it allows

us to include richer fixed effects that control for, among others, district-level time-varying unobserved

heterogeneity and fixed district-technology specialization. In support of the standard parallel trends
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assumption, we estimate a set of event-study regressions that indicate that treatment and control units

were statistically similar before the exposure to the shock.

The effects of exposure to foreign innovation are heterogeneous across sectors. In particular, we un-

cover an inverted U-shaped relationship between return innovation and the specialization of the UK

relative to the US. In response to emigrants’ exposure to US innovation, patenting in the UK increases

the most in sectors where the US and the UK have similar specialization rates. By contrast, the ef-

fect is considerably smaller in technologies where the US is more advanced, such as agriculture and

metallurgy, or where the UK is more advanced, such as textiles. This pattern is consistent with the

theoretical predictions of Van Patten (2023), who argues that the gains from international technol-

ogy diffusion are highest when a country interacts with partners with higher but similar levels of

development.

In the second part of the paper, we leverage the richness of our data to explore the mechanisms behind

the return innovation effect. On the one hand, return innovation may require the physical return of

migrants. On the other hand, migration ties may promote the diffusion of new technologies irrespec-

tive of physical return. We find that the physical return of migrants is an important driver of return

innovation, but it accounts for only about half of the overall effect. The impact of exposure to US inno-

vation through out-migration remains sizable and significant even in the absence of return migration.

This finding suggests that migration ties contribute to the diffusion of knowledge independently of

physical return

To provide more evidence in this direction, we study the role of interactions between emigrants and

their communities of origin as a driver of the diffusion of innovation. We focus on two factors that

could promote such interactions: family ties and geographical proximity. Our analysis builds on a

large literature in development economics that links the diffusion of technology to network inter-

actions (e.g. Bandiera and Rasul, 2006; Conley and Udry, 2010; Beaman, BenYishay, Magruder and

Mobarak, 2021).

We document that family members—surname groups within small geographical areas—of emigrants

increase their patenting activity after their relatives move to the US. It takes about three to five years

for a British emigrant to contribute to innovation activity back home. Despite this delay, the magni-

tude of the effect is large. Importantly, we distinguish between emigrants who, at some point, return

to the UK from those who do not. The impact of return emigrants is larger than those who never

return. However, emigrants promote innovation within their families even if they never return. Since

return emigrants account for approximately one-third of the entire migrant stock, the magnitudes of

the two effects are, in aggregate, similar.
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As an alternative proxy for local social networks, we leverage the geographical proximity between

emigrants and their former neighbors. To estimate its impact on the innovation activity of stayers,

we link the UK patent data to individual UK census records, and we geo-code the universe of the UK

population. We find that patenting activity increases for non-migrants after their neighbors migrate

to the United States. The estimated effect remains positive and significant even when we exclude the

neighbors of return migrants, suggesting that cross-country interactions between emigrants and their

origin communities are a key driver of return innovation.

This paper provides new evidence on how knowledge diffuses across countries. We document that

exposure to foreign innovation through migration ties contributes to the diffusion of innovation from

migrants’ destination countries back to their countries of origin. Our results, therefore, suggest that

out-migration can promote innovation by fostering the diffusion of knowledge into emigration coun-

tries.

Related Literature. This paper is related to four streams of literature. First, an important literature

studies technology diffusion within and across countries (among others, see Jaffe, Trajtenberg and

Henderson, 1993; Bahar, Hausmann and Hidalgo, 2014). Early contributions document the role of

foreign direct investments (Aitken and Harrison, 1999), trade (Keller, 2002), and technology sourcing

(Griffith, Harrison and Van Reenen, 2006) as drivers of international technology diffusion. Specifically,

we relate to the papers exploring the relationship between human mobility and the diffusion of knowl-

edge across countries (Kerr, 2008; Hornung, 2014; Bahar, Hauptmann, Özgüzel and Rapoport, 2019;

Bahar, Choudhury, Sappenfield and Signorelli, 2022; Bahar, Choudhury, Miguelez and Signorelli,

2024; Prato, 2025). The primary focus of the literature is on receiving countries, whereas we study

the sending country, where the effects of migration on innovation are theoretically ambiguous. Addi-

tionally, existing studies mainly look at the highly selected group of migrant inventors, whereas our

dataset allows us to examine the universe of emigrants. This distinction is relevant because inventor

migration does not fully capture the “brain drain” effect. Third, we find that migrants who are not

inventors operate technology transfer. Hence, focusing on inventors likely understates the return in-

novation effect. Finally, the literature focuses on return migration as the key mechanism underlying

technology diffusion, primarily because of data constraints. Our data, instead, allow us to document

that migrants’ social networks promote knowledge diffusion in the absence of return.

Second, we contribute to the literature on the determinants of the direction of innovation. Pioneering

work on directed technical change was formalized by Acemoglu (2002, 2010). More recently, the

question has been studied both theoretically (e.g., Bryan and Lemus, 2017; Hopenhayn and Squintani,

2021; Acemoglu, 2023) as well as empirically (e.g., Hanlon, 2015; Moscona, 2021; Moscona and Sastry,

2023; Einiö, Feng and Jaravel, 2023; Dossi, 2024; Truffa and Wong, 2025). We add to this literature by
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introducing a novel determinant of the direction of innovation, namely, international human mobility,

through the return innovation effect. We document that out-migration fosters innovation in sectors

and technologies that are similar to those migrants are exposed to in the US, thereby shaping the

direction of innovation in the United Kingdom.

Third, existing studies explore the effects of out-migration on sending countries. Emigration has

been shown to affect wages (e.g., Dustmann, Frattini and Rosso, 2015), attitudes toward democracy

(Spilimbergo, 2009; Batista and Vicente, 2011) and political change (Barsbai, Rapoport, Steinmayr and

Trebesch, 2017; Karadja and Prawitz, 2019), technology adoption (Coluccia and Spadavecchia, 2024),

entrepreneurship (Anelli, Basso, Ippedico and Peri, 2023), and social norms (Beine, Docquier and

Schiff, 2013; Bertoli and Marchetta, 2015; Tuccio and Wahba, 2018). We provide new evidence that

emigration shapes the rate and direction of innovation in the sending countries by increasing their

exposure to knowledge developed abroad. Our findings add to the existing literature, which gener-

ally interprets out-migration as a depletion of the stock of human capital.

Finally, by its setting, this paper contributes to the literature on innovation and technology diffu-

sion during the Age of Mass Migration. Several papers examine the short-run (e.g., Moser, Voena

and Waldinger, 2014; Arkolakis et al., 2020; Moser et al., 2020) as well as the long-run (e.g., Akcigit,

Grigsby and Nicholas, 2017b; Burchardi et al., 2020) implications of immigration for US innovation.

Our work is closest to Andersson, Karadja and Prawitz (2022), who show that mass out-migration

from Sweden triggered labor-saving innovation by increasing the relative cost of labor. In this paper,

we document a different phenomenon–the “return innovation effect”—whereby emigrants generate

knowledge flows from their destinations back to their areas of origin. Our findings show that the

European mass migration to the US facilitated the diffusion of American technology into Europe.

Outline. The rest of the paper is structured as follows. In Section II, we describe the historical and

institutional context. In Section III, we present the data. In Section IV, we discuss the research design.

In Section V, we document the main findings. In Section VI, we discuss the mechanisms and possible

alternative interpretations. In Section VII, we conclude.

II HISTORICAL BACKGROUND

In this section, we provide details on the English and Welsh migration to the United States (II.A) and

on intellectual property protection in the United Kingdom and in the United States over this period

(II.B).
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II.A The English and Welsh Migration to the United States

Between 1850 and 1920—the so-called Age of Mass Migration—more than 30 million Europeans mi-

grated to the United States (Abramitzky and Boustan, 2017). Migrants from England and Wales

accounted for approximately 10% of the total (Willcox, 1928), and emigration rates in Britain were

among the highest in Europe (Baines, 2002).
7

In this section, we provide details on the English and

Welsh migration to the US.

II.A.1 Migration Policy in the United Kingdom and the United States

Until 1917, the US applied minor restrictions on European immigration (Abramitzky and Boustan,

2017). As a result, the Age of Mass Migration was characterized by virtually no legal constraints on

human mobility to the US. Until 1900, immigrants mostly originated from Northern Europe, partic-

ularly the United Kingdom, Ireland, Germany, Sweden, and Norway. This positive attitude towards

immigration started to decline in the 1890s as flows from Eastern and Southern Europe increased.

The restrictive immigration policies of the 1920s, however, allotted generous quotas to the United

Kingdom, which were never filled (Abramitzky and Boustan, 2017).
8

Like in other European countries, out-migration legislation in the UK encouraged emigration towards

the Empire (Baines, 2002).
9

Emigration to the United States was neither subsidized nor discouraged.

Attitudes towards out-migration remained positive after World War I, and the perceived slowdown

of emigrant flows after the War was viewed with concern by policymakers (Leak and Priday, 1933).

II.A.2 The Characteristics of British Emigrants

The British migration to the US presents two main distinctive features compared to the broader Euro-

pean phenomenon.
10

First, unlike most continental countries, Britain was already highly urbanized

7
Only Ireland, Italy, and Norway had higher emigration rates, although, in England, massive out-migration lasted longer

than in the other countries above.

8
The 1921 (resp. 1924) Act computed the quota for a given country as 3% (resp. 2%) of the population from that country

that was recorded in the US census in 1910 (resp. 1880). This scheme favored first-wave immigration countries, such as the

United Kingdom and Germany, at the expense of new ones, as recommended by the Dillingham Commission (Higham,

1955).

9
Out-migration was encouraged in two ways: reduced and subsidized ticket fares and allotment of agricultural lands. Policy

efforts were directed towards the Empire, particularly Canada and Australia, through the Committee of the Emigrants’

Information Office. In general, however, these policies were not successful. Baines (2002) argues that less than 10% of

emigrants traveled under government assistance during the entire 1814-1918 period, and Leak and Priday (1933) report

similar figures for the post-War era.

10
Throughout the period, the US was the most frequent destination for English and Welsh migrants. Between 1850 and 1930,

more than 40% of total British and Welsh emigrants settled in the US. This figure compares to 25% in Canada, 20% in

7



and industrialized at the inception of the Mass Migration.

Second, the selection of British migrants differed from that in continental Europe (Erickson, 1957).

Compared to the occupational structure of Great Britain, migrants were less likely to be employed in

agriculture and more likely to be low and high-skilled industrial workers (Baines, 2002, p. 83). Until

the 1880s, British emigrants generally came from rural areas and, consequently, the vast majority

were farmers. However, as cities and smaller urban centers gained prominence, migrants started

being increasingly employed in industrial manufacturing occupations. Starting in the 1880s, urban

areas supplied most overseas migrants (Erickson, 1957, 1972; Thomas, 1954).

At the beginning of the 1860s, when the transatlantic migration was taking off, about 15% emigrants

were employed in agriculture, and only five percent were white-collar workers. In the early 1900s,

this composition had shifted as agricultural workers accounted for five percent of the overall emigrant

stock, while those employed in white-collar occupations were 25%.

II.B Intellectual Property Protection in the United Kingdom and in the United States

During the period of our analysis, patents in the United Kingdom and the United States were granted

by the respective patent offices. However, the UK and the US did not mutually recognize patents. In

this section, we describe patent protection in the two countries, as well as international intellectual

property protection.

II.B.1 Patent System in the United Kingdom

The United Kingdom established the world’s oldest continuously operating patent system in 1623-

1624. However, access to intellectual property protection was difficult until 1850 (Bottomley, 2014).

Fees amounted to approximately four times the average annual income in 1860, and the application

process was lengthy and uncertain (Dutton, 1984). A large literature documents the poor performance

of this system during the Industrial Revolution (e.g., Macleod, 1988). The 1852 Patent Law Amend-

ment Act sought to reform this process. The reform effort was inspired by the system in place in the

United States and reduced application fees and shortened the bureaucratic process. A subsequent

reform in 1883 further reduced fees, permitted applications by mail, and introduced both a litiga-

tion system and professional patent examiners. A technical examination of novelty was introduced

only in 1902. Until 1907, patents were granted conditional on the invention being produced in Britain

(Coulter, 1991).

Australia, and 15% in other destinations (Baines, 2002).
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II.B.2 Patent System in the United States

The first article of the United States Constitution establishes that inventors should be granted ex-

clusive rights over their discoveries. In 1836, US Congress passed the Patent Act, which formally

instituted the US Patent Office (USPTO). The USPTO has been credited as the first modern patent

system in the world (Khan and Sokoloff, 2004). Two features distinguished the American patent sys-

tem from its British counterpart. First, professional examiners carried out a novelty examination to

ascertain the originality of patent applications. Second, low application fees ensured that access to

intellectual property protection was widespread.

II.B.3 International Intellectual Property Protection

As national patent systems were established in Europe and in the US during the 19
th

century, demands

for international regulation increased. The Paris Convention—formally, the “Paris Convention for the

Protection of Industrial Property”—of 1883 governed international patent protection (Penrose, 1951).

This agreement emerged from a decade of multilateral confrontations that started with the World Ex-

hibitions in Vienna (1873) and Paris (1878). The Paris Convention introduced two major principles.

First, nationals and residents of subscribing countries were guaranteed equality of treatment with

nationals. This concept, known as “national treatment,” rejects the principle of “reciprocity,” which

maintains that nationals in subscribing countries would be granted the same protection as their origin

country. The United States strongly advocated for reciprocity (Penrose, 1951). Second, upon applying

for a patent in a member country, inventors were granted a “right of priority” of six months. Patents

filed in foreign countries during the priority period would not invalidate the inventor’s claim for

protection in other member countries. However, patents obtained in one member state were not au-

tomatically recognized by other countries. To effectively claim protection, inventors had to submit

different patent applications, which represented a substantial bureaucratic and financial burden. The

UK joined the Convention in 1884, and the US joined in 1887.

While the Paris Convention—and its numerous amendments—are still in operation today, interna-

tional patents were only established in 1970. Since the UK and the US did not mutually recognize

patents, we use patenting patterns as a proxy for knowledge flows between the two countries.

III DATA

To conduct the analysis, we assemble two novel datasets. The first links British migrants in the United

States to the UK census, allowing us to construct a matrix of bilateral migration flows at the UK district

and US county level. This dataset provides individual-level information on the origin of migrants and

allows us to build a dataset of return migrants. We describe this dataset in section III.A. The second
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dataset consists of the universe of patents granted in England and Wales between the second half of

the 19th century. We digitize these data, which to date were not available in disaggregated form, and

link inventors to the UK census. We describe this dataset in section III.B. In section III.C, we describe

the additional data sources we use in the analysis.
11

III.A A Novel Individual-level Dataset of British Immigrants in the United States

Our empirical analysis requires information on the detailed origin of English and Welsh immigrants

within the United Kingdom. The available data, however, do not contain this information, as neither

the US nor the UK collected disaggregated records on the origin of immigrants and the destination of

emigrants. We address this limitation by developing a new dataset that links British immigrants in

the US to the British census. In this way, we are able to observe an individual in the US and to track

him to his UK census record before he emigrated.
12

This is the first dataset that reconstructs migration

flows at this granular level of aggregation for a non-Scandinavian European country during the Age

of Mass Migration and adds to work by Abramitzky, Boustan and Eriksson (2014) and Andersson et

al. (2022) on Norway and Sweden.
13

To construct the linked dataset, we leverage confidential individual-level data from population cen-

suses in the United Kingdom (Schurer and Higgs, 2020) and the United States (Ruggles et al., 2021).

We extract the universe of British male immigrants from US censuses in 1900, 1910, 1920, and 1930.
14

These records contain the name and surname, birth year, and immigration year of each migrant, which

we use to match these individuals to the last British census where the emigrants appeared.
15

We use

state-of-the-art census-linking algorithms adapted from pioneering work by Abramitzky, Boustan,

Eriksson, Feigenbaum and Pérez (2021), as described in Appendix Sections A.III.1 and A.III.2, which

discuss in more detail the primary sources and the technical implementation of the algorithm.

11
Appendix A provides a more detailed discussion of the various data sources used in this paper.

12
Throughout the paper, we use the masculine to refer to individuals in our data because, as we explain in detail later, we

can only work with male individuals.

13
England and Wales were larger in terms of the overall population and US immigrant population. The population of Sweden

and Norway in 1890 was approximately 4.7 and 2 million, while it was 27 million in England and Wales.

14
We cannot use information from the 1870 and 1880 censuses because the immigration year was not recorded. Individual-

level data from the 1890 census have not survived. Following the standard practice in the literature, we only link men

because women usually changed their surname upon marriage.

15
For example, we link an individual who immigrated to the US in 1905 to the 1901 UK census. Because no census was taken

in 1870, we match those who migrated between 1870 and 1881 to the 1860 census. Moreover, since the last available UK

census was in 1911, we match all those who emigrated after 1911 to that one. Thus, we have no information on migrants

born after 1911. Since the median age of migrants is 30 and less than 10% of the distribution is younger than 19 in the rest

of the sample, this limitation bears little quantitative implications for the matching rate in the later part of the sample.
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In our preferred version of the data, we match approximately 65% of male British immigrants who

appear in the United States census, as shown in Appendix Figure A.7. The linking rate is consid-

erably higher than benchmark datasets linking individuals over time (e.g., Abramitzky et al., 2021).

There are at least three potential explanations for this difference. First, British immigrants were a posi-

tively selected group of urban skilled manufacturing workers. Their census records would, therefore,

plausibly be more accurate than for other populations.
16

Second, British immigrants spoke English.

Linguistic factors do not threaten our linking algorithm, but they are challenging to resolve in inter-

generational linking routines. Finally, the high quality of UK census records facilitates the linking

procedure.

This approach nonetheless presents some important caveats.
17

First, it may deliver spurious links if

the matching variables are insufficient to restrict the pool of potential matches. Second, the matching

probability may be correlated with individual characteristics. To address the first issue, we discard

the matches that do not attain a high level of string similarity. Moreover, we weigh each migrant

by the inverse of the number of matches he is paired with to minimize the weight placed on false-

positive matches. The results remain, however, qualitatively unchanged if we only consider single

matches. To address the second potential issue, in Appendix Table A.3, we report the correlation

between emigrants’ observable characteristics and the linking probability. Overall, this association is

small and often statistically insignificant.

It is challenging to validate the data with external sources that contain disaggregated information on

the origin of British emigrants to the US because, to the best of our knowledge, they do not exist. In

Appendix Figure A.9, we correlate our data with county-level estimates of aggregate transatlantic em-

igration for the period 1880–1910 assembled by Baines (2002) and confirm that the two are positively

correlated.
18

In addition, we construct a dataset of return migrants. To assemble it, we follow a similar procedure.

The only difference is that migrants are matched to the UK censuses taken in the decades after their

immigration year. As an example, someone who migrated to the US in 1895 is matched to censuses

in 1901 and 1911. To avoid double-counting, if an individual is matched to more than one census, we

keep the match(es) in the first.

16
This pattern is in line with evidence by Helgertz, Price, Wellington, Thompson, Ruggles and Fitch (2022) that individuals

with relatively higher socio-economic status have higher linking rates in the US census.

17
Appendix Section A.III.3 presents a more detailed discussion of the internal and external validation exercises we undertake

to assess the plausibility of the linked emigrant sample.

18
See Appendix A.III for a more detailed discussion.
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Figure I reports in grey the number of English and Welsh immigrants in the United States by year of

immigration, digitized from official statistics (Willcox, 1928). The blue line on the right y-axis tabulates

the number of immigrants in our linked dataset. Our data co-moves with official statistics data. Panel

IIa of Figure II reports the spatial distribution of emigration rates across districts in the final sample

and highlights its cross-sectional spatial heterogeneity. In Appendix Figure A.10, we break down the

map by decade and uncover substantial variation in the origin of US emigrants over time, as discussed

in Appendix Section A.III. Table I, Panel A, provides descriptive statistics for variables tabulated from

the 1880 individual census. Panel B lists the district-level number of emigrants and return migrants

in the UK-US-linked migrants sample by decade.

III.B A Dataset Covering British Patents in the Second Half of the Nineteenth Century

We measure innovation activity using patents, as standard in the literature (Griliches, 1998).
19

We use

data on the universe of patents granted in the United States digitized by Berkes (2018). Leveraging

information on the county of residence of inventors and the technology class (both reported on patent

documents), we construct a balanced panel at the county-technology class-grant year level.
20

We collect all the patents granted in the United Kingdom in 1900-1939 from PATSTAT, which provides

bulk access to documents from the European Patent Office. These data contain information on authors

and CPC classes but do not report the geographic location of inventors. To retrieve the coordinates of

the inventors, we merge them with data by Bergeaud and Verluise (2024) and map them to registration

districts at their 1890 borders.

For the period between 1853 and 1898, UK patent data was not available in digitized format. To tackle

this data limitation, we digitize the universe of patents granted in England and Wales between 1853

and 1899 from scans of the original documents we obtained from the UK Patent Office (UK IPO).

We apply optical character recognition (OCR) techniques on more than 300,000 original documents

to convert the scanned images into machine-readable text. Then, we use large language models to

parse the information contained in the raw text into a structured dataset. Compared to standard text

extraction algorithms, this method harnesses artificial intelligence to deal with OCR issues and non-

19
Patents are an imperfect proxy for innovation, as non-patented innovation represents a meaningful share of overall tech-

nological progress (Moser, 2019). However, we believe this limitation is minor in our context. As discussed in Section II.B,

both the US and the UK implemented reforms prior to our study period that lowered barriers to patenting and led to sharp

increases in patent counts. This supports the use of patents as a meaningful indicator of technological activity. In addition,

our results also hold within technologies. Hence, if the propensity to patent in a given sector is similar in the UK and in the

US, different propensities to patent across sectors should not be a concern for our analysis.

20
We map patents to counties at 1900 borders. From the three-digit Cooperative Patent Classification (CPC) class, we map

patents to a coarser taxonomy of twenty technological sectors.
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standard formulations of patent texts.
21

We parse information on the title, text, inventors’ names,

geo-referenced addresses, filing and issue dates, assignee status, and whether the patent was filed by

a patent agent. To conduct the analysis, we map patents to districts at 1890 borders.

This dataset adds to the one developed by Hanlon (2016) (1855–1883) by compiling information on

patent titles, texts, and geography and extending the period until 1899, and expands previous work

by Nuvolari and Tartari (2011), which covers the period until 1853. Appendix Figure A.2 reports

the number of patents granted in the UK by year (Panel A.2a). The blue dots report the dataset we

assemble, and the red data are tabulated from PATSTAT. The two series are consistent and display a

steady growth in the number of patents issued throughout the period. Panel A.2b shows the evolution

in the number of patents granted by technological class.

Patents differ in terms of novelty and economic value. In contemporaneous settings, forward citations

are the standard proxy for patent impact. However, these were not reported in historical documents

(Andrews, 2021). To construct a measure of patent “impact,” we apply the text-based methodology

developed by Kelly et al. (2021) to the corpus of British patents. Additionally, we adapt this approach

to measure the textual similarity between British and American patents and proxy for technology

transfer between the US and the UK. Intuitively, a British and an American patent are similar if their

texts feature semantically similar words. Appendix Section A.II.6 describes in detail the practical

implementation of the algorithm.

Finally, to perform the neighborhood-level analysis, we link the patent data to the census. To perform

this linking, we match inventors based on the string similarity between their name and surname and

those recorded in the census, conditional on geographic proximity. We describe the precise imple-

mentation in Appendix Section A.II.7. Figure A.6 displays the geographic distribution of inventors

across England and Wales using the geo-coded addresses of the inventors linked to the census.

In Table I, Panels C and D, we report descriptive statistics for this sample. Panel C reports the total

number of patents granted across districts by year and breaks it down into the five most common

fields in the sample. Panel D reports statistics for the sample of inventors linked to the population

census. Figure Panel IIb reports the spatial variation in the number of patents normalized by district

population in 1891.

21
Appendix Section A.II provides more details on the implementation procedure of the OCR and parsing algorithms.
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III.C Additional Variables

We assemble district-level statistics from UK population censuses at a decade frequency between 1851

and 1911. Districts are the level of observation in most of the analysis. These were statistical units with

an average population of 40,000, which makes them broadly comparable to US counties.
22

Districts

undergo minor boundary changes during the analysis period. To ensure geographical consistency,

we crosswalk all variables to districts at 1890 borders, as explained in Appendix Section A.I.5.

IV EMPIRICAL STRATEGY

In this section, we describe our empirical strategy. In section IV.A, we provide details on the con-

struction of technology exposure in the United States. In section IV.B, we describe our baseline em-

pirical specifications and discuss the potential endogeneity associated with them in subsection IV.C.

In section IV.D, we outline our identification strategy and the associated double and triple differences

designs.

IV.A Measuring Exposure to American Technology

We construct two measures of exposure to US technology. The first is the number of emigrants to the

United States from any given UK district. The underlying hypothesis is that districts with relatively

more emigrants to the United States have higher exposure to US technology. The second measure

uses two margins of variation: along technological classes and along districts. First, local specializa-

tion across counties measures the knowledge diffusing from those counties. Second, the number of

migrants that leave a given district and settle in a given county measures the intensity of the return

knowledge channel. To fix ideas, consider two districts A and B. The same number of emigrants n

leaves each district. Emigrants from A settle in county a, which only produces innovation in sector

sa. Emigrants from B settle in county b, which only innovates in sector sb. Then, we expect district A

(respectively B) to innovate comparatively more in sector sa (respectively sb).

We define knowledge exposure as:

Knowledge Exposureik,t ≡ ∑
j∈J

(
Patentsjk,t

Patentsj,t
× Emigrantsi→j,t

)
, (1)

where i, j, k, and t denote a (UK) district, a (US) county, a technology class, and a decade, respec-

tively.
23

The set J denotes the universe of counties. The knowledge exposure term averages district-

22
Differently from US counties, UK districts did not have budgetary or administrative authority.

23
Throughout the paper, decade t refers to the ten years before the upper bound t. For example, the decade indexed by 1890
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level exposure to county-level specialization across technology classes.

The first term in the summation captures specialization, while the second term captures district-level

exposure. The relative share of patents may inflate the influence of specialization in counties with a

small number of granted patents. While this bias is unlikely to be large, as those counties would likely

have low district-level exposure, to address this concern we code an alternative knowledge exposure

variable that measures specialization as the raw count of patents in a given technology class. An

additional challenge is that districts with larger bilateral linkages are likely larger and, hence, selected.

To account for district-level time-varying confounding variables, we control non-parametrically for

district-by-time fixed effects. Additionally, we report results for an alternative knowledge exposure

that measures exposure through relative emigrant shares. We discuss these alternative definitions in

more detail in the Appendix Table C.I.2.

IV.B Empirical Specifications

We estimate two sets of regressions. First, we study the relationship between overall patenting activity

in the UK and the number of transatlantic emigrants:

yi,t = αi + αt + β × US Emigrantsi,t + X′
i,tΓ + ε i,t, (2)

where i and t denote, respectively, a district and a decade; yi,t is the outcome variable; αi and αt are

district and decade fixed effects; US Emigrantsi,t is the number of emigrants to the United States from

district i between years t− 9 and t; and Xi,t is a set of district-level controls—population, employment

shares across sectors, share of males—measured in 1880 and interacted with year dummies. Standard

errors are clustered at the district level.

The second specification studies the relationship between patenting in the UK across technologies

and exposure to US technology in (1):

yik,t = αit + αk + β × Knowledge Exposureik,t + ε ik,t, (3)

where k denotes technology classes, the term αit denotes district-by-decade fixed effects, whose in-

clusion allows us to control non-parametrically for time-varying unobserved heterogeneity at the

district level; the term αk denotes technology-fixed effects and excludes variation arising from factors

that are technology-specific but common across areas and over time. Standard errors are clustered at

refers to 1881–1890.
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the district level.

We consider three different sets of outcomes throughout the paper. First, we use the log(1+) number

of patents to measure the volume of patenting activity. Second, to account for heterogeneous novelty

across patents, we compute the log(1+) number of patents in the top 20% of the impact distribution of

the measure proposed by Kelly et al. (2021) and constructed based on the corpus of UK patents. Third,

to measure technology flows from the US into the UK, we compute the average text-based similarity

between US and UK patents (Appendix Section A.II.6 provides additional details). In Appendix Sec-

tion C.I.1, we present alternative specifications with different transformations and definitions of all

the dependent variables and show that results remain qualitatively unchanged.

IV.C Potential Sources of Endogeneity

The main factor that cautions against a causal interpretation of the estimates of regression (2) is that

out-migration is not random across districts. In particular, any unobserved variable correlating with

out-migration and the volume of innovation y induces bias in the estimated β coefficient. To address

this issue, in (3), we include district-by-time fixed effects to partial out time-varying heterogeneity

within districts. The inclusion of these fixed effects allows us to exclusively leverage cross-technology

variation.

A remaining potential issue is assortative matching, meaning there may be a—possibly unobserved—

variable that correlates with the location where emigrants settle in the United States and the compo-

sition of patenting activity at home across technology classes. In Section II.A, we discussed that the

historical and empirical evidence suggests that, over time, emigrants originated from increasingly

affluent and urbanized areas. Suppose emigrants also settled in comparatively more urban and afflu-

ent counties in the United States, and there was a correlation between patenting activity in specific

fields and economic growth. In that case, the selection issue may bias the OLS estimates upward. We

note that the bias arises only if (i) the correlation between patenting and the underlying confounding

variable is heterogeneous across technology classes and (ii) the correlation is similar in the US and the

UK. If (i) does not hold, then the omitted confounding variable would be absorbed by district-by-time

fixed effects. If (ii) does not hold, the selection bias would work against our result.

Assortative matching may also arise if pre-existing differences in specialization across technology

classes predicted the counties where emigrants chose to settle. For example, suppose that emigrants

from a largely textile area were comparatively more likely to settle in counties with larger textile

sectors. Then, the estimated β from equation (3) would reflect pre-existing innovation similarities

between sending and settling areas rather than capture the effect of return innovation. Evidence by
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Hanlon (2018) and Ottinger (2020), among others, suggests that location decisions may not be ran-

dom. In Appendix Section B.III, we show that British migrants in this period do not display a similar

pattern.
24

However, ultimately, we cannot rule out assortative matching across US counties. Assor-

tative matching is part of the broader “reflection problem” whereby our estimates may reflect shocks

that simultaneously influence innovation in migrants’ destination county and origin district (Manski,

1993). In the next section, we propose an empirical strategy to address these issues.

IV.D The Effect of Exposure to US Technology on UK Innovation: Double and Triple Differences

Analysis

To estimate the causal impact of immigrants’ exposure to US technology on innovation in the United

Kingdom, we leverage shocks to US innovation activity. Suppose there is a sudden increase in the

number of patents granted in a particular technology class within a US county. Then, the “return

innovation” effect would imply that UK districts with more emigrants who settled in that county

experience increased innovation activity in that same class. In other words, innovation shocks in the

United States should transmit to the United Kingdom through pre-existing migration linkages.

We define a “shock” to US innovation as any period of unusually high patenting activity. As in the pre-

vious analysis, shocks can either pool technologies together or be technology-specific. In the pooled

case, we isolate shocks by residualizing the (log) number of patents on county and year fixed effects,

and label as a shock any observation in the top 5% of the residualized distribution. For technology-

specific shocks, we residualize patenting on a fully saturated set of county, technology, and year fixed

effects, and similarly identify shocks as the top 5% of the residualized distribution.
25

From the perspective of US counties, innovation shocks represent periods of exceptionally high patent-

ing activity. Appendix Table C.14 and Appendix Figure C.14 report the difference-in-differences es-

timates of the increase in patenting associated with these shocks. Patenting increases on average by

58% (in the pooled case) and by 13% (in the technology-specific instance) in US districts after a shock.

24
Appendix Table B.3 presents evidence against this pattern.

25
While our algorithm identifies shocks to innovation in a data-driven way, their mapping to specific historical events is not

straightforward. In Appendix Section B.IV, we use the 1918–1919 Great Influenza pandemic as a case study of a histori-

cally grounded technology shock. The influenza pandemic offers a rare opportunity to validate our approach against an

episode of increased innovation. Consistent with Berkes, Coluccia, Dossi and Squicciarini (2023), we find that counties with

higher influenza mortality experienced disproportionately greater innovation in pharmaceutical-related technologies. Our

algorithm similarly detects a higher likelihood of innovation shocks in these areas, confirming that our method captures

the response to a major exogenous event affecting innovation. From the “reflection problem” perspective, a strategy that

leverages the resulting US innovation shocks would yield invalid causal inference only if the severity of the pandemic was

correlated with pre-existing migration linkages between US counties and UK districts, which appears implausible.
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Let σj,t be an indicator variable equal to one if county j undergoes an innovation shock in year t.

To measure the exposure of British districts to these shocks (occurring in the US), we compute the

number of emigrants from district i who are exposed to a shock as ∑j∈J

(
Emigrantsi→j × σj,t

)
, where

Emigrantsi→j is the number of emigrants who moved from district i to county j during the decade

1870–1879, and σj,t measures the intensity of the shock in county j at time t. We then residualize

the resulting series by district and year. Based on these residuals, we define a binary variable that

identifies a district as exposed to an innovation shock if its residual falls within the top 5% of the

overall distribution. This indicator variable, ξi, equals one in the first period when district i is exposed

to a US innovation shock, and zero otherwise. The technology-specific case follows the same logic

and leads to the construction of a set of indicator variables ξik which take value one in the first year a

district-technology pair ik is exposed to a US innovation shock and zero otherwise.
26

The distribution

of district—year exposure to US technology shocks is shown in Appendix Figure C.2, and patenting

in districts exposed to US innovation shocks in Appendix Figure C.3.

Given a set of district-level shocks ξi and district-technology-level shocks ξik, we estimate double and

triple differences regressions to study how exposure to US innovation shocks impacts innovation in

the UK. In the case of district-level shocks, we estimate the following regression:

yi,t = αi + αt +
b

∑
h=−a

βh × I [Di,t = h] + ε i,t, (4)

where t now denotes years and Di,t ≡ (t − ξi) is the number of periods since district i is first exposed

to a US innovation shock ξi. I [·] is an indicator variable which is equal to one when the argument is

true and zero otherwise. In the case of technology-specific shocks, the regression is a triple-differences

model:

yik,t = αik + αit + αkt +
b

∑
h=−a

βh × I [Dik,t = h] + ε ik,t, (5)

where αik, αit, and αkt denote, respectively, district-by-technology, district-by-year, and technology-

by-year fixed effects, and Dik,t ≡ (t − ξik) denotes the number of years since the district-technology

couple ik is first exposed to a US innovation shock ξik.

Under a standard parallel trends assumption, the coefficients βh≥0 in equations (4)–(5) estimate the

26
Specifically, we define σjk,t as an indicator equal to one if the county-technology pair ik undergoes a shock in year t and

zero otherwise. We then compute the number of emigrants from district i that, in year t, are exposed to US innovation

shocks in technology k as ∑j∈J

(
Emigrantsi→j × σjk,t

)
. We residualize the resulting series against district, technology, and

year-fixed effects, and we label an observation as a shock if the residualized value is in the top 5% of the overall distribution

of exposure. Then, we define as ξik the indicator variable equal to one in the first year when the district-technology pair ik

is exposed to a US innovation shock and zero otherwise.
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dynamic treatment effects of exposure to US innovation shocks on outcome y. The parallel trends as-

sumption requires that, in the absence of the shocks, the outcome variable y would not have differed

across treated and untreated units. While this assumption is not testable, we show that, in all regres-

sions, the estimates of the pre-treatment coefficients βh for h < 0 are never statistically different from

zero. This pattern provides evidence in favor of the plausibility of the parallel trends assumption.

The roll-out of shocks across units is staggered: different districts and district-technology pairs may

be exposed to US innovation shocks at different points in time. Goodman-Bacon (2021) shows that,

in these settings, the two-way fixed-effects estimator fails to estimate the average treatment effect

when treatment effects are heterogeneous. In robustness checks, we employ the estimator proposed

by Sun and Abraham (2021) to deal with the staggered nature of the research design and confirm all

the baseline results. Moreover, we show that the results are not sensitive to alternative thresholds to

define the shocks to US innovation or the district-level exposure to such shocks. We discuss robustness

checks in more detail in Section V.

V MAIN RESULTS

In this section, we document the “return innovation” effect. Section V.A presents descriptive evidence

on the association between exposure to US innovation through out-migration and innovation in the

United Kingdom. Section V.B provides causal evidence of the return innovation effect. Section V.C

shows that the effect is stronger in sectors where the United States and the United Kingdom have

similar relative specialization. Section V.D documents that the knowledge spillovers from exposure

to US technology are largest in UK sectors most similar to those that emigrants were exposed to.

Finally, Section V.E discusses robustness checks.

V.A Exposure to Innovation in the United States and the Volume and Direction of Innovation in

the United Kingdom

We begin by studying the association between emigration and patenting activity in the United King-

dom. In Table II, column (1), we report the estimates of equation (2). We find that moving from the

25th to the 75th percentile of the distribution of emigrants to the US is correlated with an 8% increase

in patenting activity in the UK district of origin. The magnitude of the coefficient halves and remains

statistically significant after including district-level controls interacted with time fixed effects (column

2). In column (3), we show that out-migration is associated with an increase in the average similarity

between British and American patents. Moving from the 25th to the 75th percentile of emigration is

linked to a doubling of average similarity. These results provide the first piece of evidence in support

of the hypothesis that emigrants foster the transfer of technologies from the US into the UK.
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In column (4), we report the results of estimating equation (2) on the number of patents in the top

quintile of the impact distribution, which we refer to as “breakthrough” innovations. More impactful

patents are those whose text is more distant from existing patents at the time of issue, but more similar

to those issued afterward.
27

We find that moving from the 25th to the 75th percentile of out-migration

is associated with an 11% increase in the number of breakthrough patents. This pattern suggests that

return innovation is not driven solely by low-impact inventions, but also by novel and influential

technologies.

In columns (5–8), we report results similar to columns (1–4), but at the technology level. Column (5)

reports the estimates of equation (3). We document a positive and statistically significant correlation

between technology-specific exposure and innovation in that technology. Moving from the 25th to

the 75th percentile of technology-specific exposure is associated with an 11% increase in patenting

activity in that technology class in the district of origin. In column (6), we add more granular fixed

effects that control for district-by-year and district-by-technology variation. The coefficient remains

positive and statistically significant but its magnitude decreases, becoming equal to one-fourth that

of column (5).

In column (7), we show that exposure to US technologies is associated with an increase in the simi-

larity between British and American patents. Quantitatively, the association is large, as moving from

the 25th to the 75th percentile of the main regressor is associated with a three-fold increase in the

average similarity between UK and US patents. In column (8), we document that the association be-

tween exposure to US innovation increases and patenting remains positive, statistically significant,

and quantitatively unchanged when the dependent variable only includes breakthrough patents.

Finally, we explore the long-run association between exposure to US technology through emigration

and innovation. Using data on patenting activity between 1940 and 2015, we compute the association

between knowledge exposure in the 1930s and innovation in the later twentieth century. In Appendix

Figure B.1, we report the correlation between knowledge exposure and decade dummies between

the 1940s and the 2010s, which serves as the baseline category. The association between knowledge

exposure and innovation remained stable until the 1960s. It began to decline in the 1970s and, more

substantially, in the 1980s. Appendix Section B.II provides a detailed discussion of this analysis.

27
We adopt the methodology introduced by Kelly et al. (2021) and apply it to the texts of British patents. We use a 5-year

window to compute this metric, but results are not sensitive to alternative bandwidths.
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V.B The Impact of Innovation in the United States on Innovation in the United Kingdom

In this section, we describe the results of estimating the double and triple differences research design

described in Section IV.D. This analysis enables us to draw a causal link between exposure to US

innovation via migration ties and the production of innovation in the UK. As discussed in Section IV.C,

the estimates in the previous section may not have a causal interpretation if there is an omitted variable

that predicts where British immigrants settled across the United States and is correlated with the

direction of innovation in their areas of origin—an issue we refer to as “assortative matching.”

We begin by studying the impact of US innovation shocks on the overall production of innovation in

the UK. Column (1) of Table III reports the baseline estimate of regression (4), where we aggregate

pre- and post-treatment periods into two bins, and the treatment is equal to one after a given district is

exposed to a US innovation shock and zero otherwise. After a district is exposed to a shock, patenting

increases by approximately 9%. In the United States, an innovation shock is associated with a 58%

increase in patenting activity in the county where it occurs (see Appendix Table C.14). Hence, on

average, emigration ties generate a 15% pass-through rate of innovation shocks from the US to the

UK. Following a US innovation shock, the similarity between patents granted in exposed districts and

American patents doubles (column 2). In addition, in column (3), we show that the number of patents

in the top 20% of the impact distribution also increases by 8%, implying that emigrants facilitate the

transfer of high-quality patents from the US into the UK.

In columns (4–6), we report the estimates associated with regression (5), where the treatment is an

indicator equal to one after a district-technology class pair is exposed to a US innovation shock and

zero otherwise. In this case, the regression includes the interacted fixed effects. Hence, identification

hinges on within-district technology exposure to US innovation shocks over time. The results con-

firm the previous findings. Innovation increases by 6% in districts exposed to an innovation shock.

Emigrant ties generate a 50% pass-through rate of the increased patenting activity in the US into the

UK. Patents in the same technologies and districts that are exposed to US innovation shocks also be-

come more similar in their textual content to American patents (column 5). Finally, in column (6), we

confirm that the results are quantitatively similar if we only look at high-impact innovation, as the

number of breakthrough patents increases by 5% when units are exposed to the treatment.

Figure III reports the event-study estimates associated with equation (4) (Panel IIIa) and (5) (Panel

IIIb). In each figure, we test for the joint significance of all pre-treatment coefficients and find no

statistical support for the alternative hypothesis that there is at least one significant pre-treatment

coefficient. Overall, we interpret these patterns as evidence in favor of the parallel trends assumption

stated in IV.D. After the treatment, the number of patents increases. The post-treatment coefficients are
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highly statistically—and jointly—significant.
28

The exposure to US innovation shocks has a persistent

impact on UK patenting. As shown in Appendix Figure C.7, patenting activity in the US increases

sharply and remains significantly above the pre-shock mean after the shock period. The persistent

effect observed in the UK is consistent with this pattern.

In Figure IV, we re-estimate equations (4) (Panel IVa) and (5) (Panel IVb) using the similarity between

British and American patents as the outcome variable. As before, we estimate no statistically signif-

icant pre-treatment coefficient, except a ten-year lead in IVa. The tests for the joint significance of all

pre-treatment coefficients provide further evidence in favor of the validity of the pre-trend assump-

tion. After the shock, British patents in exposed units become more similar to American patents, and

the effect persists until ten years after the shock occurs.

V.C Return Innovation and Relative Specialization

In this section, we study how return innovation varies depending on the sector-level comparative

advantage of the UK and the US. The historical evidence suggests the US was relatively more special-

ized than the UK in agricultural and heavy machinery technologies, even early in the sample period,

whereas the UK was more specialized in chemical and textile innovation (David, 1966; Rosenberg,

1970). To measure relative specialization across technologies, we build on the international trade lit-

erature and construct a measure of revealed comparative advantage (RCA). This index takes a value

above one for technologies where the UK was more innovative than the US in terms of share of total

patents, and below one otherwise (Balassa, 1965).
29

To study the heterogeneous responses to emi-

grants’ exposure to US technology, we estimate equation (3), interacting knowledge exposure with a

set of technology dummies.

Figure V reports the results of estimating the triple-differences regression (5) interacting the treatment

with technology-specific dummy variables. Each dot reports the coefficient of one technology class

28
The timing of the effect, which starts showing up already two years after the shock in the US, is in line with those found in the

literature. For example, Furman, Nagler and Watzinger (2021) and Berkes and Nencka (2024) find that patent repositories

and Carnegie libraries, respectively, have a positive and statistically significant impact on local patenting activity within

one year after their establishment.

29
In the international trade literature, revealed comparative advantage is a metric that hinges on the observation that a coun-

try’s comparative advantage is revealed by the country’s relative exports (Balassa, 1965). In our setting, we define the

revealed comparative advantage as

RCAik ≡
Patentsik

/
∑k′∈K Patentsik′

∑i′∈I Patentsi′k
/

∑i′∈I,k′∈K Patentsi′k′

where i and k denote countries and sectors within sets I and K. Specifically, I = {UK, US}. Then, the UK is relatively more

specialized in sectors with RCA
UK,k above one.
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on the y-axis, and the UK revealed comparative advantage for that class on the x-axis. We uncover an

inverted U-shaped relationship between the size of return innovation and specialization. Exposure

to US innovation generates larger gains in technologies where the US and the UK have similar rates

of specialization, such as electricity, scientific instruments, and engines. By contrast, the gains are

not statistically significantly different from zero in sectors where the US is more advanced, such as

agriculture, and where the UK is at the frontier, such as textiles and chemistry. The figure reports the

coefficients of a regression between the coefficients, the RCA, and its squared values, and confirms the

existence of such a hump-shaped relationship. This finding is consistent with the theoretical argument

of Van Patten (2023), who develops a model of endogenous technology adoption where the gains from

international technology diffusion are highest when a country trades with partners with higher—but

similar—levels of development.

V.D Return Innovation: Spillovers on Adjacent Technology Classes

We have shown that return innovation is driven by exposure to technologies in which the US and

the UK share similar patterns of comparative specialization. We now explore how the impact of

technology-specific shocks in the US varies across different technologies in the UK. Specifically, we

examine how exposure to US innovation in sector k affects innovation output in sector k itself and in

other sectors.

In Figure VI, the red dot reports the baseline estimate from the triple-differences specification. To com-

pute the blue dots, we first measure the technological distance between two classes as the probability

that a patent is assigned to both classes. We then divide the resulting distribution into quintiles: the

first quintile contains the most similar technology classes, while the fifth quintile contains the least

similar. We estimate a series of triple-difference models, each pairing a technology with US innova-

tion shocks occurring in technology classes in a given quintile of similarity, excluding the technology

itself. The resulting coefficients are plotted as blue dots.

As expected, the effect of return innovation is largest in the same technology to which emigrants were

exposed, and it decays with distance from that technology. However, we find that return innovation

also spills over to closely related technologies. The coefficient for the first quintile—which captures

how UK innovation responds to US innovation shocks in the most similar set of technology classes—

is approximately half the size of that for the same technology and is highly statistically significant.

The coefficients for the more distant quintiles are negative and not statistically different from zero,

except for the fifth quintile—the most distant—which is negative and statistically significant, with

a magnitude equal to one-third that of the own-technology effect. This pattern suggests that expo-

sure to US innovation shocks partially crowds out innovation in the most distant technology classes.
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However, the crowding-out effect is more than offset by an increase in innovation within the exposed

class and in technologically close sectors. Hence, this result is consistent with our finding that return

innovation not only reallocates innovation across technologies but also leads to an overall increase in

innovation levels.

V.E Robustness Checks

To conclude, we perform a series of checks to test the robustness of our results. More details are

provided in Appendix Section C.

We begin by testing the robustness of our results to different definitions of our dependent variable,

patenting activity. In the baseline analysis, our preferred measure is the log of the number of patents,

to which we add one to avoid dropping the zeros. In Appendix Tables C.1 and C.9, we show robust-

ness to alternative transformations of the dependent variable for the panel (2)–(3) and the double-

and triple- differences regressions (4)–(5) and find that all results remain qualitatively and quantita-

tively unchanged using the raw count, the inverse hyperbolic sine, or adding 0.1 instead of one to the

log of the count. Moreover, in Appendix Table C.5 and Appendix Figure C.5, we replicate the base-

line panel regressions and event studies (4)–(5) as Poisson quasi-maximum likelihood regressions,

as patents are a count variable.
30

The estimates confirm the baseline results: we find no evidence

of statistically significant pre-treatment coefficients, and innovation increases after UK districts are

exposed to shocks to US innovation. A possible concern with patents as a proxy for innovation is

that they do not adequately reflect economically relevant innovations, i.e., technologies that are con-

cretely adopted by firms. To address this concern, in Appendix Table C.2, we replicate the baseline

findings of regressions (2)–(3) using as outcome variable only patents with a firm assignee, which

provide an arguably more direct measure of firm innovation.
31

All results hold when applying this

sample restriction. A plausible concern is that our results are driven, at least in part, by the same

inventors patenting the same innovation in the US and in the UK. To quantify the importance of this

phenomenon, we replicate the baseline analysis, excluding from the dependent variable all British

patents whose inventor also appears on a US patent. Appendix Tables C.7–C.12 report the panel and

double- and triple-differences results. The estimates using this alternative sample confirm the base-

line findings, indicating that even if “double filing” was practically feasible, it is not a key driver of

our results.

30
We prefer a log-linear to a Poisson specification as the baseline because it allows us to test for robustness to potential

concerns such as spatial autocorrelation, which would be hard to address with a Poisson regression.

31
By law, the inventor of a patent in the UK must be an individual. However, many patents indicate when the inventor is

employed in a firm or whether they are the owner.
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Second, we gauge the robustness of our findings to alternative definitions of our text-based depen-

dent variables, similarity and originality. In the baseline analysis, these are computed over a five-year

window around the issue year of the patent. In practice, this window implies that, when computing

the originality of a given British patent, we compare it with those issued in the preceding and fol-

lowing five years. When computing the similarity between a British patent and other US patents,

we consider those issued in the preceding five years. This is an arbitrary choice, hence in Appendix

Tables C.1 and C.9, we consider two additional windows—one and ten years—and find that all the

baseline results remain qualitatively unchanged.

Third, we test the robustness of our results to alternative ways of defining exposure. In Appendix

Table C.3, we show that the baseline association between patenting and exposure to US technology

remains qualitatively unchanged when using several alternative definitions of exposure. In Appendix

Table C.4, we also find that the association is stronger when exposure is measured using only the most

impactful patents. This pattern is consistent with the hypothesis that migrants had a greater incen-

tive to transmit knowledge back to the UK when the underlying patents had higher economic returns.

Further details on the construction of the alternative exposure measures are provided in Appendix

Section C.I.2. Additionally, we show that our results are robust to excluding from the computation

of exposure all US counties in the top 10% and 20% of the distribution of British-born inventors. The

rationale is that in these areas, the contribution of British inventors to local innovation is dispropor-

tionately large and may reflect origin-country specialization rather than American innovation. Our re-

sults remain qualitatively unchanged under these sample restrictions. Together with the double- and

triple-difference estimates—which show that episodes of unusually intense innovation diffused into

the UK—this finding provides further reassurance that our results are not simply driven by British

migrants sorting into US counties specialized in the same technologies as their regions of origin. The

results are shown in Appendix Tables C.6–C.11.

Fourth, we show that the double and triple differences estimates are robust to alternative definitions

of “innovation shocks.” Specifically, in the main analysis, we define a unit—either a district or a

district-technology pair—as exposed to a US innovation shock in a given period if the number of mi-

grants who are exposed to a US innovation shock from that district is in the top 5% of the overall

distribution of exposed emigrants. The 5% threshold is arbitrary. In Appendix Table C.10, we adopt

two alternative definitions of the shocks (top 10% and top 1%). Intuitively, more restrictive thresholds

should deliver larger treatment effects because they require more emigrants to be exposed to a US in-

novation shock to activate the treatment at the district level. The estimates confirm this insight: while

most of the coefficients remain statistically significant irrespective of the threshold, the magnitude of

the estimated treatment effect increases with more restrictive thresholds.
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Fifth, we verify that our results hold when restricting the linked UK–US sample to exact census

matches only. Our analysis relies on an algorithm that links British immigrants in the US to individu-

als in the UK census, which can return multiple potential matches per immigrant. In the baseline anal-

ysis, we follow standard practice and weight each match by the inverse of the number of matches to

avoid multiple counting. The results remain unchanged when we repeat the panel, double-difference,

and triple-difference analyses using only unique (single) matches, which comprise approximately

40% of the sample (Appendix Tables C.8–C.13).

Sixth, we show that the results from our double- and triple-difference designs are robust to alterna-

tive estimators. In our setting, the roll-out of innovation shocks is staggered, as they occur at differ-

ent times across districts and technologies. Following the recent literature, we replicate our baseline

results using the two-way fixed effects estimator developed by Sun and Abraham (2021), which ac-

counts for staggered treatment timing (Appendix Figure C.4). The results are very similar when using

the log(1+) number of patents (Panels C.4a–C.4b) and the similarity between British and American

patents (Panels C.4c–C.4d) as outcome variables.

Finally, we verify that our results hold under different levels of clustering. In all our main specifica-

tions, standard errors are clustered at the district level. In Appendix Figures C.1 and C.6, we use a

set of alternative standard errors for both the panel and the double and triple differences regressions.

In particular, we confirm that the results remain statistically significant when accounting for spatial

autocorrelation as suggested by Conley (1999).

VI MECHANISMS

After documenting the “return innovation” effect, we study its drivers. In section VI.A, we show that

return migration accounts for approximately half of the overall effect. In section VI.B, we document

that, even in the absence of return migration, emigrants impact the innovation activity of their social

networks in the United Kingdom. In section VI.C, we discuss potential complementary mechanisms

that cannot be tested empirically.

VI.A The Role of Return Migration

Return migration is a primary candidate for explaining our findings through two channels. First,

return migrants may engage in innovation activities in the fields they were exposed to abroad. Sec-

ond, return migrants may facilitate access to US knowledge without directly undertaking innovation

activities. The literature does not offer conclusive evidence on the effect of return migration on inno-
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vation.
32

The baseline linked sample of British emigrants traces them back to the UK census before they mi-

grated. To measure return migration, we perform one additional step. We link British migrants who

migrated to the US to UK censuses completed after they had settled in the US. Then, we aggregate

return migration flows at the district-by-county level and decade frequency. Analogously to equation

(1), we compute a measure of “return knowledge exposure” as follows:

Return Knowledge Exposureik,t ≡ ∑
j∈J

(
Patentsjk,t

Patentsj,t
× Return Migrantsj→i,t

)
(6)

where Return Migrantsj→i,t is the number of migrants that return from county j to district i in decade

t. Because UK censuses are available only until 1911, our return migration dataset spans 1870–1910.

In Table IV we estimate equations (2) and (3) including returning US emigrants (columns 1–3) and the

return knowledge exposure indicator (columns 4–6). In columns (1) and (4), the dependent variable

is the total number of patents. In columns (2) and (5), the dependent variable is the similarity to

US patents, while in columns (3) and (6), it is the number of breakthrough patents. Throughout all

specifications, the coefficients of US emigrants and the baseline knowledge exposure metric remain

statistically significant, and the magnitudes are similar to those of Table III. The association between

return migration and patenting is less strong. The coefficient is generally positive—albeit not always

statistically significant—and at least one-half smaller compared to the coefficient of out-migration.
33

As expected, we find a positive correlation between return migration and patenting, but there is sub-

stantial variation in innovation associated with out-migration that is not explained by return migra-

tion. In the rest of this section, we provide evidence of the role of interactions between emigrants and

local communities in Britain in fostering knowledge exchange even in the absence of physical return

migration.

32
On the one hand, several studies estimate modest effects for recruiting programs of high-skilled nationals working abroad

(Ash, Cai, Draka and Liu, 2022; Shi, Liu and Wang, 2023). On the other hand, Giorcelli (2019) shows that individuals exposed

to (managerial) foreign knowledge change their behavior once back in their origin country.

33
The association with US patent similarity is not statistically significant for overall patenting (column 2), and is negative

(though small) for patenting by technology (column 5). This pattern suggests that return migrants—who likely resettled in

the UK several years before being observed in our analysis—are less likely to foster the diffusion of novel innovations in

the US in the recent past.
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VI.B The Role of Social Networks

In this section, we study how emigrants impact the innovation activity of their social networks in

Britain. We focus on two factors promoting interactions between the emigrants and the non-migrant

population: family ties and geographical proximity. This analysis builds heavily on experimental

evidence from developing countries, which links the diffusion of technology to interactions over social

networks (e.g., Bandiera and Rasul, 2006; Conley and Udry, 2010; Beaman et al., 2021).

VI.B.1 Transatlantic Emigration Within Families

To reconstruct extended families from the census data, which only contains information on the mem-

bers of the same household, we leverage the geographical distribution of surnames. Specifically, we

assume that individuals with the same surname who live in geographical proximity—in the same

county—are related. This assumption is reasonable as long as surnames are not too common: in this

analysis, we therefore drop the top 5% most common surnames. Results are robust to alternative

thresholds (excluding the 1% or 10% most common surnames).

We study how US emigration shapes the innovation activity of the relatives of the migrants who do

not move in a difference-in-differences setting. The treatment leverages variation in the surname of

US emigrants by county. Formally, we estimate variations on the following regression:

y f ,t = α f + αt +
b

∑
h=−a

βh × I[D f ,t = h] + ε f ,t, (7)

where f denotes a family—i.e., a surname-by-county pair—and t is a year. The term D f ,t denotes the

number of periods since at least one member of family f moved to the United States. Since families

are identified at the county level, standard errors are clustered by county. Under the standard par-

allel trends assumption, the coefficients βh≥0 estimate the impact of emigration on patenting activity

carried of the emigrant’s family.

First, in Panel A of Table V we report the estimates of (7) using a pre-post indicator for treatment

status. Emigration within the family is associated with an increase in patenting (column 1), which

remains unchanged if we include county-by-year fixed effects (column 2) and is larger the more mi-

grants from the family move to the United States (column 3). Since patenting is a skewed outcome,

in column (4), we use a binary indicator that confirms the results. Importantly, the patents granted

to the family members of those who migrate to the US become more textually similar to US patents

(column 5). These findings provide further evidence pointing to information flows between migrants

and their relatives in the UK. Finally, in column (6), using the text-based impact measure, we confirm
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that the increased patenting activity generated by within-family migration is not restricted to low-

impact innovations. Figure VII–Panel VIIa provides the associated event-study estimates. We find no

evidence of statistically significant pre-treatment coefficients and a large increase in patenting, which

builds up over the three years following the emigration of the family member.

We then distinguish between emigrants who return and those who do not. Emigrants could inter-

act with their families upon returning, but they could also maintain ties while abroad. In Panel B,

we restrict the treatment to emigrants who never return to the UK. The estimates confirm that even

when emigrants do not return, they nonetheless promote innovation within their families in the UK.

Comparing the coefficients in Panels A and B, we find that the treatment effect of non-return migrants

is about 70% of the average treatment effect, irrespective of return status. This difference is consistent

with the descriptive evidence discussed in section VI.A and confirms that migrants promote innova-

tion in their origin communities even when they do not return.

VI.B.2 Transatlantic Emigration Within Neighborhoods

Geographical proximity between the origin of emigrants and stayers is an alternative proxy for local

social networks. In this section, we show an increase in the innovation activity of stayers whose

former neighbors migrate to the US.

We leverage the granular nature of our data and perform an individual-level analysis. First, we extract

all men aged between 18 and 50 in 1900 who do not emigrate from the 1891 census. We create a yearly

balanced panel that reports the number of patents granted to each individual between 1880 and 1900

using the linked inventor-census data described in Appendix Section A.II.7.
34

We complement this

data with information on the geographical proximity between these stayers and migrants to the US.

Specifically, we define a variable Dp,t that codes the periods since at least one individual living within

k kilometers from a non-migrant p migrates to the US and zero otherwise. In the baseline analysis,

we consider a threshold k of five kilometers.
35

The regression specification mirrors (7), except that the variable Dp,t substitutes D f ,t. All regressions

include individual and year-fixed effects. In various specifications, we include district-by-time and

parish-by-time fixed effects to control for time-varying heterogeneity at fine levels of spatial aggre-

34
In Table C.15, we show that our results are robust to excluding Wales from the estimation sample. The probability of linking

patent and census records for inventors residing in Wales is, in fact, lower than in England (see Appendix Table A.3).

35
In Appendix Figure C.8, we show that the results are robust to alternative thresholds. In particular, the estimated treat-

ment effect remains positive as in the baseline specification. Exceedingly restrictive thresholds, however, exclude a large

number of treated individuals, and consequently, the estimated treatment effect is biased toward zero. Slack definitions of

neighborhoods, by contrast, introduce measurement error, which reduces the precision of the estimates. We discuss these

modeling choices in Appendix Section C.III.
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gation. Standard errors are clustered at the parish level because neighborhoods form subdivisions of

parishes.

Table VI (Panel A) reports the results. Within-neighborhood migration to the United States has a pos-

itive and statistically significant impact on the innovation activity of stayers (column 1). Importantly,

the effect remains when including parish-by-time fixed effects (column 3). In this case, the identify-

ing variation consists of within-parish neighborhood-level emigration and ensures that we compare

similar areas. In column (4), we show that, conditional on having at least one emigrant in the neigh-

borhood, having more does not scale up the positive effect of emigration on innovation. In column (5),

we use a binary indicator instead of the (log) number of patents, which confirms the baseline results.

Importantly, in column (6), we find that individuals exposed to US emigrants through neighborhood

ties are granted patents that are more similar to those issued in the United States. This pattern confirms

that neighborhood migrants plausibly transfer knowledge to their communities of origin. Finally, col-

umn (7) shows that neighborhood out-migration also promotes high-impact patenting. Figure VIIb

replicates these estimates in an event-study framework. We do not find statistically significant pre-

treatment coefficients, even though these are not precisely estimated. The effect of neighborhood

out-migration is largest four to five years after the treatment is first active and decreases thereafter.

In analogy to the family analysis, in Panel B, we restrict the attention to non-return migrants. The

framework mirrors the previous specification, except that we now only include non-return migrants

in the definition of the treatment D f ,t. We find that emigration within the neighborhood increases

innovation even if the emigrant never comes back to the United Kingdom. In this case, the estimates

in Panels A and B largely overlap; hence, the contribution of return migrants appears modest.

In Appendix Figure B.2, we estimate the baseline regression and interact the treatment variable with

dummies for the occupational categories of the inventor. We find substantial heterogeneity in re-

sponse to neighborhood out-migration: treatment effects are larger for positively selected inventors

working as entrepreneurs, utility workers—a catch-all term which comprises independent inventors—

, chemistry and metallurgy workers, and engineers. By contrast, inventors employed in low-skilled

occupations, such as agriculture and construction, do not react to exposure to within-neighborhood

out-migration.

Taken together, the results presented in this section highlight the importance of social networks in

driving return innovation. As evidenced by the text-based measure of similarity between British and

US patents, emigrants generate knowledge flows that benefit those communities. Importantly, these

effects operate even in the absence of physical return migration.
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VI.C Complementary Mechanisms

To conclude this section, we discuss two alternative channels—temporary migrations and monetary

remittances—that may play a complementary role in shaping innovation outcomes, although they

are unlikely to be the primary drivers of the return innovation effect.

Temporary Migrations In our study of the mechanisms behind the return innovation effect, we find

that physical return is an important determinant but not its exclusive driver. It is possible, how-

ever, that short-term temporary migrations influence the dynamics of innovation in the UK. Since

we construct migration flows from population censuses, which are conducted every ten years, our

data cannot identify temporary migrants. For the same reasons, we cannot quantify the importance

of industrial espionage.

However, the quantitative effects of temporary migrations and industrial espionage are likely to be

modest. First, the notion of a “temporary migrant” in XIX-century transatlantic migration is not well-

defined. Piore (1980) refers to Southern and Eastern European migrants as temporary because they

planned to return to their origin countries at some point. This spell could take, however, decades. For

example, a one-way cabin travel ticket from New York to Liverpool, at roughly 100$, would cost as

much as 20% of the average annual US income. The extent of short-term stays must have been, there-

fore, relatively limited, especially for UK immigrants whose return rates were substantially lower

than for Southern and Eastern migrants (Bandiera, Rasul and Viarengo, 2013) and, therefore, were

more likely to settle permanently in the United States. Moreover, Piore (1980) notes that “tempo-

rary” migrants were relatively low-skilled and, therefore, less likely to operate technology transfer.

Industrial espionage does not appear to be quantitatively sufficient to generate the return innovation

effect that we estimate. Additionally, our research designs speak against the temporary migration

and the industrial espionage mechanisms. For temporary migration or industrial espionage to ex-

plain the double and triple differences result, in fact, one would need such flows to be correlated with

the county-level innovation shocks. This channel seems unlikely, although it cannot be directly tested

due to the absence of data.

Monetary Remittances While the contribution of remittances to economic development appears to

be modest, it is possible that this inflow of capital may have sustained increased innovation, per-

haps by relaxing constraints in access to credit (Gorodnichenko and Schnitzer, 2013). This capital

inflow, however, could not explain why out-migration influences the direction of innovation unless

knowledge and monetary remittances go hand in hand. Disaggregated data on financial remittances,

unfortunately, do not exist. Hence, this is a possibility we cannot investigate empirically. It nonethe-

less highlights that, if anything, financial and “knowledge” remittances are likely to shape innovation
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in a complementary way rather than in a mutually exclusive one.

VII CONCLUSIONS

Previous literature has shown that the diffusion of innovation across countries is a major driver of

long-run growth and economic convergence. However, evidence on the mechanisms behind this dif-

fusion remains limited. In this paper, we provide the first causal evidence that out-migration enables

the diffusion of innovation from migrants’ countries of destination to their countries of origin.

Our analysis focuses on the mass migration from England and Wales to the United States between

1870 and 1940. We link the individual-level census records of British immigrants in the US to the UK

population census to measure spatially disaggregated emigration flows. We complement these data

with newly digitized patents, which, combined with existing data, allow us to cover the universe of

patents granted in England and Wales over the nineteenth and twentieth centuries.

Using a difference-in-differences and triple-differences research design, we document that exposure

to foreign technology through migration ties contributes to its diffusion in migrants’ countries of ori-

gin. First, we show that the volume of innovation in the UK increases in response to greater exposure

to US innovation through emigration. Second, innovation activity in the UK shifts toward technolo-

gies to which emigrants are most exposed in the US. By analyzing the textual similarity between UK

and US patents, we find that exposure to US knowledge stimulates technology transfer. Addition-

ally, we show that this diffusion involves both low- and high-impact UK innovations. We define this

phenomenon as “return innovation.” We then turn to the drivers of return innovation. The physical

return of migrants explains approximately half of the effect. However, we find that interactions be-

tween emigrants and their communities of origin represent another important channel of technology

diffusion, even in the absence of return migration.

While the setting of this paper is historical, our results likely have implications for contemporary con-

texts. In particular, our findings echo qualitative evidence from Saxenian (1999, 2006) and are con-

sistent with contemporary evidence on the importance of in-person interactions for innovation and

diffusion (Boudreau, Brady, Ganguli, Gaule, Guinan, Hollenberg and Lakhani, 2017; Atkin, Khandel-

wal and Osman, 2017). Taken together, our results show that emigration does not necessarily lead

to underdevelopment or stagnation, as suggested by the “brain drain” hypothesis, but can instead

foster the diffusion of innovation, a key driver of economic growth. The return innovation and brain

drain effects are likely to coexist, with the balance between them depending on the type of migration

(skilled or unskilled) and the relative positions of the origin and destination countries on the technol-

ogy frontier. Beyond the relative size of these two effects, our results suggest that fostering economic
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integration between migrants’ countries of origin and destination is likely to promote knowledge

exchange.
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TABLES

Table I. Descriptive Statistics

Mean Std. Dev. Min Max Units Obs.

(1) (2) (3) (4) (5) (6)

Panel A. Demographics (in 1880)
Populationi (1,000s) 39.988 46.183 0.184 310.706 621 621

Share of Meni (%) 49.238 2.124 38.662 56.616 621 621

Share of Employmenti (%) 61.091 7.240 0.000 74.427 621 621

in Agriculturei (%) 14.406 6.892 1.989 31.117 621 621

in Constructioni (%) 3.747 1.597 1.420 20.618 621 621

in Engineeringi (%) 3.818 1.483 0.848 11.843 621 621

in Public and Liberal Occupationsi (%) 2.573 1.674 0.819 16.045 621 621

in Other Manufacturingi (%) 3.289 2.772 0.618 19.684 621 621

in Textilesi (%) 4.996 5.135 0.736 34.390 621 621

in Tradei (%) 1.612 1.003 0.372 9.783 621 621

in Transportationi (%) 2.382 1.340 0.438 13.857 621 621

Panel B. Emigration to the United States
US Emigrantsid 105.783 148.023 0.000 1752.157 621 3726

Return US Emigrantsid 11.845 17.108 0.000 185.591 621 2484

Panel C. Patents
Total Patentsit 21.355 68.158 0.000 2088.000 621 31671

Patents by Technology Class:

in Electricityit 1.855 14.724 0.000 1084.000 621 31671

in Instrumentsit 1.777 7.349 0.000 217.000 621 31671

in Lighting and Heatingit 1.486 5.487 0.000 145.000 621 31671

in Personal Goodsit 1.810 6.573 0.000 170.000 621 31671

in Transportationit 3.499 10.761 0.000 244.000 621 31671

Panel D. Linked Inventor-Census Sample
Number of Patentsit 0.121 0.842 0.000 274.000 110532 2210640

Agei 37.104 13.729 9.000 79.000 110532 110532

Employed in:

Agriculturei 0.133 0.339 0.000 1.000 110532 110532

Constructioni 0.140 0.347 0.000 1.000 110532 110532

Engineeringi 0.164 0.371 0.000 1.000 110532 110532

Tradei 0.089 0.285 0.000 1.000 110532 110532

Transportationi 0.092 0.289 0.000 1.000 110532 110532

Neighborhood Emigrantsi 2.294 4.099 0.000 53.424 110532 110532

Non-Return Neighborhood Emigrantsi 2.256 4.029 0.000 52.677 110532 110532

Notes. This Table presents descriptive statistics for the variables used in the main analysis at the district (Panel

A), district-decade (Panel B), district-year (Panel C), and individual level (Panel D). Demographic data in Panels

A and D are tabulated from the population census. Panel A refers to the 1880 census. Emigration data in Panels

A and D are computed from the linked migrant sample. Demographic data are cross-walked to consistent 1891

district borders. The subscripts report the aggregation level: Panel A by district i; Panel B by district-decade id;

Panel C by district-year it; Panel D by individuals i. Referenced on page(s) 11, 13.
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Table II. Exposure to Innovation in the United States and Innovation in the United Kingdom

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6) (7) (8)

Number Number

US Patents

Similarity

High

Impact

Number Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 3.518 3.518 162.555 2.042 1.006 1.006 74.488 0.388

US Emigrants 0.771
∗∗∗

0.482
∗∗∗

18.677
∗∗∗

0.976
∗∗∗

(0.132) (0.178) (5.348) (0.164)

Knowledge Exposure 0.023
∗∗∗

0.006
∗∗∗

0.231
∗∗∗

0.022
∗∗∗

(0.002) (0.001) (0.058) (0.001)

District FE Yes Yes Yes Yes – – – –

Decade FE Yes – Yes Yes – – – –

Controls × Time No Yes No No – – – –

County-Year FE No Yes No No – – – –

District-Year FE – – – – Yes Yes Yes Yes

Technology FE – – – – Yes – Yes Yes

District-Technology FE – – – – No Yes No No

Technology-Year FE – – – – No Yes No No

Number of Districts 621 620 621 621 621 621 621 621

Observations 3,726 3,720 3,726 3,726 70,433 70,433 70,433 70,433

Notes. This Table reports the association between emigration to the United States and innovation in the United

Kingdom. In columns (1–4) (resp. 5–8), the unit of observation is a district (resp. district-technology pair) ob-

served at a decade frequency between 1870 and 1930. In columns (1–2) and (5–6), the dependent variable is the

log(1+) number of patents. In columns (3) and (7), the dependent variable is the average text-based similarity

between UK and US patents issued in the previous five years. In columns (4) and (8), the dependent variable

is the log(1+) of the number of patents in the top 20% of the impact distribution (“Breakthrough” patents). In

columns (1–4), “US Emigrants (1,000s)” is the number of migrants to the United States from the given district

and decade, in thousands. In columns (5–8), “Knowledge Exposure” is defined in equation (1). Columns (1)

and (3–4) include district and decade fixed effects. Column (2) includes district fixed effects, district-level con-

trols measured in 1880 and interacted with decade indicators, and county-by-decade fixed effects. Columns

(5) and (7–8) include district-by-year and technology fixed effects. Column (6) includes district-by-year and

technology fixed effects. Standard errors, reported in parentheses, are clustered at the district level. Referenced

on page(s) 19.
∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table III. The Effect of Shocks to Innovation in the United States on Innovation in the United

Kingdom

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6)

Number

US Patents

Similarity

High

Impact

Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 1.687 121.561 0.736 0.292 30.124 0.082

Post × US Innovation Shock 0.091
∗∗

18.523
∗∗∗

0.082
∗

0.064
∗∗∗

8.760
∗∗∗

0.020
∗∗∗

(0.045) (3.473) (0.043) (0.009) (1.145) (0.006)

District FE Yes Yes Yes – – –

Year FE Yes Yes Yes – – –

District-Year FE – – – Yes Yes Yes

Technology-Year FE – – – Yes Yes Yes

District-Technology FE – – – Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 31,671 31,671 31,671 601,749 601,749 601,749

Notes. This Table reports the effect of shocks to US innovation activity on innovation in the United Kingdom.

In columns (1–3), the unit of observation is a district observed at a yearly frequency between 1870 and 1930. In

columns (4–6), the unit of observation is a district-technology pair observed over the same period. In columns

(1) and (4), the dependent variable is the log(1+) number of patents. In columns (2) and (5), the dependent vari-

able is the average text-based similarity between UK patents and US patents issued in the previous five years.

In columns (3) and (6), the dependent variable is the log(1+) number of patents in the top 20% of the impact

distribution (“Breakthrough” patents). “Post” is an indicator equal to one for all years after the observation

unit is exposed to a shock to US innovation activity, equal to zero otherwise. “US Innovation Shock” is defined

in Section IV.D. Columns (1–3) include district and year fixed effects. Columns (4–6) include district-by-year,

technology-by-year, and district-by-technology fixed effects. Standard errors, reported in parentheses, are clus-

tered by district. Referenced on page(s) 21, 27.
∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table IV. Return Migration and Innovation in the United Kingdom

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6)

Number

US Patents

Similarity

High

Impact

Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 3.145 120.882 1.780 0.828 50.971 0.316

US Emigrants (β̂1) 0.817
∗∗∗

19.982
∗∗∗

0.870
∗∗∗

(0.138) (7.360) (0.188)

Return US Emigrants (β̂2) 3.059
∗∗∗

73.163 0.455

(1.136) (71.053) (1.300)

Knowledge Exposure (β̂1) 0.020
∗∗∗

0.428
∗∗∗

0.016
∗∗∗

(0.001) (0.059) (0.001)

Return Knowledge Exposure (β̂2) 0.404
∗∗∗

-16.161
∗∗∗

0.629
∗∗∗

(0.066) (2.910) (0.076)

District FE Yes Yes Yes – – –

Decade FE Yes Yes Yes – – –

District-Year FE – – – Yes Yes Yes

Technology FE – – – Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 2,484 2,484 2,484 46,835 46,835 46,835

Standardized β̂1 0.075 0.054 0.091 0.195 0.068 0.273

Standardized β̂2 0.029 0.021 0.005 0.046 -0.029 0.120

Notes. This Table compares the effect of out-migration and return-migration on innovation in the UK. The unit

of observation is a district (columns 1–3) and a district-technology (columns 4–6). Units are observed at decade

frequency between 1880 and 1910. Different sample periods depend on the lag structure. In columns (1) and

(4), the dependent variable is the log(1+) number of patents. In columns (2) and (5), the dependent variable is

the average text-based similarity between UK and US patents issued in the previous five years. In columns (3)

and (6), the dependent variable is the log(1+) of the number of patents in the top 20% of the impact distribution

(“Breakthrough” patents). In columns (1–3), “US Emigrants (1,000s)” and “Return US migrants (1,000s)” are the

number of migrants and return migrants to the United States from the given district and decade, in thousands.

In columns (4–6), “Knowledge Exposure” is defined in equation (1) and “Return Knowledge Exposure” is

defined similarly to Knowledge Exposure, but only looks at flows of emigrants who eventually return to the

UK. The coefficient of out-migration flows (US Emigrants and Knowledge Exposure) are labeled as β1, and the

coefficients of return flows (Return US Emigrants and Return Knowledge Exposure) are labeled as β2. We report

the standardized coefficients at the bottom of the table. These are calculated by dividing each estimated beta

by the standard deviation of the corresponding right-hand side variable. Columns (1–3) include district and

decade fixed effects. Columns (54–6) include district-by-year, technology-by-year, and district-by-technology

fixed effects. Standard errors, reported in parentheses, are clustered at the district level. Referenced on page(s)

27.
∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table V. Within-Family Migration to the United States and Innovation in the United King-

dom

Number of Patents Text-Based Measures

(1) (2) (3) (4) (5) (6)

Number Number Number I(Patents > 0)

US Patents

Similarity

High

Impact

Panel A. Family Emigration

Dependent Variable Mean 4.919 4.919 4.919 5.835 6.612 1.229

US Emigrant in Family × Post 1.375
∗∗∗

1.505
∗∗∗

-0.312 1.303
∗∗∗

3.873
∗∗∗

0.452
∗∗∗

(0.363) (0.314) (0.218) (0.402) (0.567) (0.118)

US Emigrant in Family × Post × N. of Emigrants 1.299
∗∗∗

(0.316)

Number of Families 46,864 46,864 46,864 46,864 46,864 46,864

Observations 2,858,704 2,858,704 2,858,704 2,858,704 2,858,704 2,858,704

Panel B. Family Non-Return Emigration

Dependent Variable Mean 4.919 4.919 4.919 5.835 6.612 1.229

Non-Return US Emigrant in Family × Post 1.030
∗∗∗

1.152
∗∗∗

-1.181
∗∗

0.970
∗∗

3.065
∗∗∗

0.306
∗∗∗

(0.333) (0.281) (0.448) (0.373) (0.497) (0.092)

Non-Return US Emigrant in Family × Post × N. of Emigrants 1.813
∗∗∗

(0.626)

Number of Families 44,879 44,879 44,879 44,879 44,879 44,879

Observations 2,737,619 2,737,619 2,737,619 2,737,619 2,737,619 2,737,619

Family FE Yes Yes Yes Yes Yes Yes

Year FE Yes – Yes Yes Yes Yes

County-Year FE Yes Yes Yes Yes Yes Yes

Notes. This Table reports the impact of migration to the United States on the innovation activity of migrants’

relatives who remain in the UK. The unit of observation is a family defined by all individuals with the same

surname in the same county. Units are observed at yearly frequency between 1870 and 1930. In columns (1–3),

the dependent variable is the log(1+) number of patents issued to family members in the UK. In column (4), the

dependent variable is an indicator equal to one if family members in the UK were issued at least one patent,

equal to zero otherwise. In column (5), the dependent variable is the average text-based similarity between UK

patents and US patents issued in the previous five years. In column (6), the dependent variable is the log(1+)

number of patents in the top 20% impact distribution (“Breakthrough” patents). “US Emigrant in Family ×
Post” is an indicator equal to one in the year the first emigrant in the family moves to the US and in later years,

and equal to zero in the previous years. “US Emigrant in Family × Post × N. of Emigrants” is an interaction

between “US Emigrant in Family × Post” and the number of emigrants from that family. “Non-Return US

Emigrant in Family × Post” is an indicator equal to one in the year the first emigrant in the family moves to the

US (without returning to the UK) and in later years and equal to zero in the previous years. “Non-Return US

Emigrant in Family × Post × N. of Emigrants” is an interaction between “Non-Return US Emigrant in Family

× Post” and the number of non-return emigrants from that family. All columns include family (i.e., surname-

county) and year fixed effects. Column (3) also includes county-by-year fixed effects. Standard errors, reported

in parentheses, are clustered at the county level. The dependent variables in columns (1–4) are multiplied by

100. Referenced on page(s) 28.
∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table VI. Within-Neighbohood Emigration to the United States and Innovation in the United

Kingdom

Number of Patents Text-Based Measures

(1) (2) (3) (4) (5) (6) (7)

Number Number Number Number I(Patents > 0)

US Patents

Similarity

High

Impact

Panel A. Neighborhood Emigration

Dependent Variable Mean 6.721 6.721 6.741 6.775 8.483 6.792 1.550

Post × Emigrant in Neighborhood 0.440
∗∗∗

0.236
∗∗

0.254
∗∗

0.205 0.552
∗∗∗

0.477
∗∗∗

0.116
∗∗

(0.130) (0.110) (0.116) (0.154) (0.160) (0.132) (0.052)

Post × N. Emigrants in Neighborhood 0.210

(0.209)

Number of Individuals 136,880 136,872 134,936 117,649 136,880 136,880 136,880

Observations 2,737,600 2,737,440 2,698,720 2,352,980 2,737,600 2,737,600 2,737,600

Panel B. Neighborhood Non-Return Emigration

Dependent Variable Mean 6.721 6.721 6.741 6.775 8.483 6.792 1.550

Post × Non-Return Emigrant in Neighborhood 0.409
∗∗∗

0.252
∗∗

0.263
∗∗

0.430
∗∗∗

0.517
∗∗∗

0.453
∗∗∗

0.109
∗∗

(0.130) (0.113) (0.120) (0.163) (0.159) (0.133) (0.054)

Post × N. Non-Return Emigrants in Neighborhood 0.064

(0.216)

Number of Individuals 120,575 120,567 118,628 102,714 120,575 120,575 120,575

Observations 2,411,500 2,411,340 2,372,560 2,054,280 2,411,500 2,411,500 2,411,500

Individual FE Yes Yes Yes Yes Yes Yes Yes

Parish-Year FE No No Yes No No No No

District-Year FE No Yes – No No No No

Year FE Yes – – Yes Yes Yes Yes

Notes. This Table reports the impact of emigrants to the US on the innovation activity of their former neighbors

in the UK. The unit of observation is an individual inventor observed yearly between 1880 and 1900. The sample

includes the universe of British inventors linked to the 1891 population census, as detailed in the main text. In

columns (1–4), the dependent variable is the log(1+) number of patents granted to members of the emigrant’s

family. In column (5), the dependent variable is an indicator equal to one if members of the emigrant’s family

are granted at least one patent, equal to zero otherwise. In column (6), the dependent variable is the average

text-based similarity between UK patents and US patents issued in the previous five years. In column (7), the

dependent variable is the log(1+) number of patents in the top 20% of the impact distribution. “Post × Emigrant

in Neighborhood” is an indicator equal to one in the year the first neighbor of the inventor moves to the US

and in subsequent years, and equal to zero in the previous years. “Post × N. Emigrants in Neighborhood”

is an interaction between “Post × Emigrant in Neighborhood” and the number of emigrants to the US from

the neighborhood. “Post × Non-Return Emigrant in Neighborhood” is an indicator equal to one in the year

the first neighbor of the inventor moves to the US (without returning to the UK) and in subsequent years and

equal to zero in the previous years. “Post × N. Non-Return Emigrants in Neighborhood” is an interaction

between “Post × Non-Return Emigrant in Neighborhood” and the number of emigrants to the US from the

neighborhood. Columns (1) and (4–7) include inventor and year fixed effects. Column (2) includes inventor

and district-by-year fixed effects. Column (3) includes inventor and parish-by-year fixed effects. Standard

errors, reported in parentheses, are clustered at the parish level. The dependent variables in columns (1–4) are

multiplied by 100. Referenced on page(s) 30.
∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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FIGURES

Figure I. British Emigration to the United States: Official Statistics and Linked Sample

Linked Sample Period (1870-1930)
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Notes. This Figure compares the total number of English and Welsh immigrants in the United States as recorded

in official statistics from Willcox (1928) with the linked emigrants’ sample assembled in this paper. The gray

bars report, on the left y-axis, the number of English and Welsh immigrants in the official statistics by their

recorded immigration year in the United States. The blue line, whose values are reported on the right y-axis,

reports the total number of English and Welsh immigrants in the US that appear in our matched sample. By

construction, we can only match men who appear at least once in one British census. Numbers are in thousand

units. The black two-sided arrow marks the period covered by the linked sample, i.e., the years between 1870

and 1930. Referenced on page(s) 11.
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Figure II. Patenting and Emigration Rates in the United Kingdom

(a) Emigration Rate (%) (b) Patenting Rate (%)

Notes. This Figure reports the spatial distribution of emigrants across English and Welsh districts over the

period 1870–1930 (Panel IIa) and the number of patents issued over the same period (Panel IIb). Both series are

normalized by district population in 1891 and are reported in percentage points. Districts are displayed at 1891

historical borders, and the emigrant population is cross-walked to consistent borders. Lighter to darker tones

of color indicate increasing quantiles of the variable. The London area is displayed separately. Referenced on

page(s) 11.
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Figure III. Dynamic Effect of Exposure to Innovation Shocks in the United States

(a) Volume of Innovation

Coefficients Joint Significance (F)
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(b) Direction of Innovation

Coefficients Joint Significance (F)
Pre-Shock: 0.640 (p-val = 0.763)
Post-Shock: 4.488 (p-val = 0.000)
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Notes. This Figure reports the impact of shocks to US innovation activity on innovation in the UK. In Panel

IIIa, the unit of observation is a district observed at yearly frequency between 1870 and 1930; in Panel IIIb, the

unit of observation is a district-technology pair observed over the same period. The dependent variable is the

log(1+) number of patents. Each dot reports the coefficient of an indicator variable, which codes the time since

the observation unit is exposed to a shock in US innovation activity through emigration ties. The black dashed

line indicates the treatment period. The last period before the shock serves as the baseline category. In Panel

IIIa, the regression includes district and year fixed effects; in Panel IIIb, the regression includes district-by-year,

technology-by-year, and district-by-technology fixed effects. Standard errors are clustered at the district level.

The bands report 95% confidence intervals. Each Figure reports separate F-statistics for the joint significance

of the pre-and post-treatment coefficients and associated p-values. Referenced on page(s) 21.

48



Figure IV. Dynamic Effect of Exposure to Innovation Shocks in the United States on the

Similarity Between British and American Patents

(a) Patents Pooled Across Technologies

Coefficients Joint Significance (F)
Pre-Shock: 1.792 (p-val = 0.067)
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(b) Patents by Technology

Coefficients Joint Significance (F)
Pre-Shock: 0.561 (p-val = 0.829)
Post-Shock: 3.744 (p-val = 0.000)
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Notes. This Figure reports the impact of shocks to US innovation activity on innovation in the UK. In Panel

IVa, the unit of observation is a district observed at yearly frequency between 1870 and 1930; in Panel IVb, the

unit of observation is a district-technology pair observed over the same period. The dependent variable is the

average text-based similarity of UK patents issued in a given period to US patents issued in the previous five

years. Each dot reports the coefficient of an indicator variable, which codes the time since the observation unit

is exposed to a shock in US innovation activity through emigration ties. The black dashed line indicates the

treatment period. The last period before the shock serves as the baseline category. In Panel IVa, the regression

includes district and year fixed effects; in Panel IVb, the regression includes district-by-year, technology-by-

year, and district-by-technology fixed effects. Standard errors are clustered at the district level. The bands

report 95% confidence intervals. Each Figure reports separate F-statistics for the joint significance of the pre-

and post-treatment coefficients and associated p-values. Referenced on page(s) 22.
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Figure V. Heterogeneous Effects of Exposure to US Innovation Across Technologies
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Notes. This Figure reports the heterogeneous effects of exposure to US technology on UK innovation across

technology classes. The unit of observation is a district-technology couple observed at a yearly frequency over

the same period. Each dot reports the coefficient of an interaction term between technology dummies and an

indicator variable that is equal to one for periods after the unit is exposed to a US innovation shock for the first

time and zero otherwise. The dependent variable is the log(1+) number of patents. Each regression includes

district-by-year, technology-by-year, and district-by-technology fixed effects. The estimated coefficients are

plotted against the measure of revealed comparative advantage discussed in the main text. The UK is relatively

more active than the US in technologies to the right of one, and it is less active than the US otherwise. The plot

superimposes a polynomial of degree two and reports the estimated coefficients of the measure of revealed

comparative advantage of orders one and two, along with their robust standard errors. The size of each dot

reflects the number of patents issued in the UK over the sample period in each technology class. Referenced

on page(s) 22.
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Figure VI. Knowledge Spillovers of US Innovation Shocks on British Innovation
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Notes. This Figure reports the cross-technology knowledge spillovers of exposure to US technology shocks on

UK innovation across technology classes. The unit of observation is a district-technology couple observed at

yearly frequency between 1870 and 1930. The red square reports the baseline estimated effect from the triple

differences specification. To compute the blue dots, we compute the distance between two technology classes

as the probability that a patent is assigned to both classes. We divide the resulting measure into quintiles, where

the first quintile collects the most similar classes, and the last quintile collects the least similar. There are three

or four technology classes in each quantile. Then, we estimate a set of triple differences models where each

technology is paired with a shock to US innovation in technology in the k-quintile of the similarity distribution.

The dots report the resulting triple differences coefficients. Thus, the coefficient on the first quintile, for example,

reports how innovation in the UK reacts to exposure to a US innovation shock in the most similar quintile of

technology classes (excluding the technology itself). The bands report 95% confidence intervals. The graph

reports the point estimate of each coefficient. Referenced on page(s) 23.
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Figure VII. Dynamic Effects of Family and Neighborhood Emigration

(a) Within-Family Emigration
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(b) Within-Neighborhood Emigration

Coefficients Joint Significance (F)
Pre-Shock: 1.437 (p-val = 0.207)
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Notes. This Figure reports the impact of emigration to the United States on the innovation activity of migrants’

relatives in the United Kingdom (Panel VIIa) and of their neighbors (Panel VIIb). In Panel VIIa, the unit of ob-

servation is an extended family defined as comprising all those who share the same surname in a given county.

Families are observed at yearly frequency between 1870 and 1930. In Panel VIIb, the unit of observation is an

individual observed at yearly frequency between 1880 and 1900. The dots report the coefficients of an indicator

variable that codes the period since the first emigrant in the family (Panel VIIa) or in the neighborhood (Panel

VIIb). The black dashed line indicates the first treatment period; the previous period serves as the baseline cat-

egory. The dependent variable is the log(1+) number of patents. All regression specifications control for unit

(family or individual) and year fixed effects. Standard errors are clustered at the family (Panel VIIa) and district

(Panel VIIb) level. The bands report 95% confidence intervals. Each Figure reports separate F-statistics for the

joint significance of the pre- and post-treatment coefficients and associated p-values. Referenced on page(s) 28.
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A DATA APPENDIX

This section describes the data sources and the construction of the final sample (section A.I), the con-

struction of the newly digitized patent data and the approach to link patents to the census (section

A.II), and the methodology we developed to link the records of British immigrants in the United States

to the UK census (section A.III).

A.I Summary of Data Sources

A.I.1 Patent Data

US patent data are from Berkes (2018), who digitizes the universe of patents granted between 1836,

when the US patent and trademark office was established, and 2010. In this paper, we are interested

in the CPC technology class, the issue year, and the coordinates of residence of each inventor. We

then assign each patent to US counties at 1900 borders. Depending on the number of inventors, a

single patent may be assigned to multiple counties. In the case of patents with numerous inventors,

we weigh each by the inverse of the number of inventors to avoid multiple counting. English and

Welsh patents after 1900 are available at the European Patent Office. To construct our dataset, we

leverage bulk access to the PATSTAT dataset. Information contained in PATSTAT includes the CPC

class and the issue year. To retrieve the location of each inventor, we merge the PATSTAT data with

the PatCity repository, which contains geo-coded information on the universe of English and Welsh

patents during this period (Bergeaud and Verluise, 2024). Data before 1900 are not available. In section

A.II, we describe how we digitize the universe of patent documents issued over the period 1853–1899

to fill this substantial gap.

Importantly, we map 3-digit CPC classes to a coarser taxonomy of classes. To do that, we reduce

them to functional units using the CPC classification scheme. The scheme is publicly available at the

following link. To accommodate the historical context, we divide the transporting categories into two

classes: ”Transporting”, which includes carriages, railways, and cars, and “Ships and Aeronautics”.

Moreover, we conflate the “Weapons and Blasting” and the “Mining” classes into the “Metallurgy”

category because few patents were observed in those industries. We further augment patent data by

defining a measure of “quality” or “innovativeness” following Kelly et al. (2021). This metric flags as

influential those patents that introduce terms not used before they were granted and become common

after that. We evaluate this metric on the abstracts of patents granted after 1900. We apply this sample

restriction for consistency: in 1853–1899, we observe the full text of patents instead of their abstract.
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A.I.2 Migration Data

Disaggregated data on the origin of English and Welsh immigrants—and, more generally, of all other

nationalities—do not exist. Neither US authorities nor the sending ones in the UK collected them. We

thus lack precise information on where British immigrants in the US came from within the UK. We fill

this gap and link the individual-level UK and US censuses, as described in A.III. Ideally, we observe

the universe of British emigrants to the United States between 1870 and 1930. For those individuals,

we know all the information contained in the US Census and those detailed in the UK one. Most

notably, we know where they came from. As we discuss more in detail later, we also link return

migrants. Since the last publicly available UK census dates to 1911, we can only construct return

migration flows over the period 1870–1910.

A.I.3 Data Constructed from the Population Censuses

The main data sources we leverage are the individual-level, non-anonymized UK and US population

censuses. The US census features prominently in the economic history literature as a major source of

detailed microdata, and we thus avoid discussing it any further (Ruggles et al., 2021). The UK census

is relatively less well-known (Schurer and Higgs, 2020). Although not as rich as its US counterpart,

the UK population census covers individuals who have resided in the UK since 1850. The first census

was run in 1841, but only 1851, 1861, 1881, 1891, 1901, and 1911 are entirely digitized.
1

Data in the

census include the name and surname, birth year, division, county, district, parish, precise address of

residence, the specific occupation detailed through HISCO codes, and other variables that we do not

use in the paper, such as the type of dwelling and fertility information. We augment these variables by

geo-coding the universe of addresses that appear in the census to precise geographical coordinates.

A.I.4 Miscellaneous Data

We construct US county-level exposure to the Great Influenza pandemic using mortality statistics

collected by the US Bureau of Census. These data are available for a subset of counties representing

approximately 60% of the US population in 1900.

A.I.5 GIS Shapefiles & Boundary Harmonization

Patents and telegraph stations are mapped to 1900 registration district borders using historical GIS

files and their coordinates.
2

However, all data from the population censuses appear at historical bor-

1
The 1921 census is currently being digitized and is partially available. We do not use it because its coverage is still not

complete and because it is not available in bulk. All censuses after 1921 are subject to privacy restrictions.

2GIS data for the US are provided by NHGIS, whereas district boundaries have been digitized by the Great Britain Historical

GIS Project.
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ders. Registration districts have not undergone major boundary changes over the period that we

studied. However, we adapt the method presented by Eckert, Gvirtz, Liang and Peters (2020) to UK

districts to ensure that we work with consistent geographical units.

To construct geographical crosswalks using their method, one needs to assume that variables are

evenly distributed over the area of geographical units. The crosswalk is then obtained by overlapping

geographical units over time. Suppose unit x in decade d is split, and 80% of its territory is assigned

to itself, while 20% is assigned to another district y. To construct a cross-walk relative to period d + t2

for a generic variable between decades d − t1 and d + t2, for t1, t2 > 0, one needs to multiply the

variable measured in district x in d − t1 by 4/5 and add 1/5 of the variable in x to that measured in

y in the same decade. We map registration districts to their boundaries in 1901. Less than 5% of the

overall area of England and Wales is re-assigned in this way. We adopt the same methodology to map

counties to their 1900 borders.

A.I.6 Geo-referencing the Historical British Census

A notable feature of the UK census is that it contains precise information on the residential address

of the universe of the British population. This information is extremely valuable because, in princi-

ple, it assigns the finest possible location to each individual. In practice, however, it is highly non-

standardized and challenging to use. In this paper, we expand earlier work by Lan and Longley

(2019), who adopt a different strategy, only analyze the 1901 census, and geo-reference the 1851-1911

censuses. The geo-coded census sample is used in the neighborhood individual-level analysis; all

other exercises do not rely on these data.

There are two ways to geo-reference historical addresses. One approach is manually digitizing histor-

ical locations, either streets or enumeration units, from historical maps. However, this method does

not scale up and becomes rapidly unfeasible as the data grows. A second automated approach is to

run text-based address matching between historical data sources and address databases that have

already been geo-referenced. We follow this latter method since we need to geo-reference 5,464,578

unique addresses.

To perform the actual matching, we first operate a preliminary manual trimming of addresses. First,

we remove house numbers because they undergo many changes and re-sequencing over time. Sec-

ond, we remove uninformative locations, such as “village”, “farm”, and “rectory”. Then, we input

the resulting addresses as queries into the geo-referencing engine. Crucially, we discard the match if

the resulting coordinates are not within the parish’s boundaries where the address is recorded. This

consistency check is necessary because homonyms are frequent. Since observing two addresses with

the same name within a given parish is extremely rare, this ensures that the algorithm matches are
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not spurious.

We use the geo-coded 1891 census in the neighborhood analysis. We geo-code 85% of the addresses

listed in the census, accounting for 86% of the entire population. The geo-coding ratio is homogeneous

across districts except in Wales, where many addresses are reported in Welsh. In one robustness

exercise, we thus omit Wales from the analysis sample and confirm that the results hold.

A.II Patent Data

A.II.1 Motivation

Despite its historical significance, we lack comprehensive patent data for the Second Industrial Rev-

olution period (1850–1900) in the United Kingdom. In particular, it is impossible to reconstruct the

geographical distribution of innovation activity during this period. This data limitation sharply con-

trasts the effort undertaken to document patenting activity since the inception of the English patent

law in 1617 up until the end of the First Industrial Revolution in the 1840s (Nuvolari and Tartari,

2011; Nuvolari, Tartari and Tranchero, 2021). We fill this gap by constructing the first dataset of En-

glish and Welsh patents that spans the period 1853- 1900 and contains detailed information on the

text, geographical location, inventors’ personal information, and date for the universe of patents.

A.II.2 Data Sources

The UK Intellectual Property Office allowed us access to restricted full-page scans of original patent

documents. These are the universe of patents granted in England and Wales between 1617 and 1899.

This paper focuses on the period 1853-1899 for two main reasons. First, Nuvolari and Tartari (2011)

already digitized patents before 1853 from Bennet Woodcroft’s index, although patent documents

contain additional information compared to the index. Second, in 1853, a reform dramatically lowered

patent application prices. This makes it challenging to compare patents before and after the reform.

Patent documents contain a wealth of unstructured information. We provide two examples in Figure

A.1: in panel A.1a, we show the patent granted to Henry Bessemer for the eponymous process to

produce steel, and in panel A.1b we display the patent granted to John Starley for the first modern

safety bicycle. Both patents are in our dataset. The rectangles identify the location of the textual data

that we extract. These comprise (i) a short title, (ii) a long title, (iii) the author(s)’s name(s), (iv) the

author(s)’s address(es), (v) the author(s)’s profession(s), (vi) the filing date, (vii) the issue date, (viii)

the type of protection, (ix) an indicator of whether the application was filed by an agent on behalf of

someone living abroad, and (x) the full text of the patent. Not all (i-x) are available throughout the

sample. In particular, (i), (vi), and (viii) are available only until 1873. After that date, a short title is

no longer reported, the filing date is reported only sporadically, and the type of protection becomes
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immaterial, for only granted patents are included in the sample.

A.II.3 Digitization

We individually perform optical character recognition (OCR) on each patent to structure the data in

a machine-readable dataset. To ensure state-of-the-art performance, we OCR the first page of each

document, where all the (i–ix) variables are located, using Amazon’s commercial textract engine.

To retrieve the rest of the text not used in this paper, we use the open-source engine tesseract. An

OCR-ed document is a text file. To extract the relevant variables, we harness the flexibility of state-of-

the-art large language models—specifically, GPT 3.5—to parse all variables (i–ix). The text of patent

grants is relatively standardized, but inconsistencies arise relatively frequently due to idiosyncratic

writing, phrasing, and OCR errors. The flexibility of large language models allows us to consistently

and precisely extract all the relevant information for a large (95%) share of all patent applications.

Running the same model on the title of each patent, we assign the technological class to patent grants.

This exercise resulted in a database of approximately 800,000 patents granted between 1853 and 1899.

A.II.4 Geo-Coding

To retrieve each patent’s location, we geocode each inventor’s listed address using the commercial

geocoding engine provided by MapTiler AG. To geocode an address, if a coarse geographical unit is

listed on the patent (e.g., the county), we condition the outcome coordinates to lie within that unit.

In Figure IIb, we report the resulting distribution of patents per capita, whereas Figure A.3 reports

the spatial distribution of patent grants across technologies. Reassuringly, these are consistent with

underlying population and economic development indicators as well as with historical evidence (e.g.,

note the substantial clustering of textile patents in the Lancashire districts).

A.II.5 External Validation

To validate our data, we consider the only two series covering a portion of the 1853-1899 years. Han-

lon (2016) digitized an index of patents issued between 1855 and 1883. His data list, for each patent,

the inventor(s) and their profession(s), a technology class, and the issue year. On top of the longer

time coverage, our data thus contain several additional information, including the geographical coor-

dinates. The second dataset we use to compare is the “A Cradle of Invention” (COI) series, published

by Finishing Publications (2018). These data, too, were digitized from indices and thus only list au-

thors, issue year, and, often, titles. In principle, this series spans the years 1617–1895. However, after

1883, patent applications that were eventually denied protection were also listed. Absent a way to

identify granted patents, we do not report figures after 1883 for the COI series.

In Table A.1, we report the aggregate number of patents issued according to our series (columns 2 and
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6), COI (columns 3 and 7), and Hanlon (2016) (columns 4 and 8). Reassuringly, the three series are

highly consistent. Our series is closest to Hanlon (2016), but the COI figures are not too far off either.

Overall, the Table strongly suggests that our series is as complete as the Hanlon (2016) database.

We cannot, however, externally validate it for the later part of the period because there is no data

available.

A.II.6 Measuring the Similarity Between US and UK Patents and their Quality

This section describes how we construct the patent similarity metric to measure “copying” and “orig-

inality” of UK innovation activity. The approach borrows heavily on Kelly et al. (2021). We adapt their

methodology to our context by leveraging text information in titles only. Even though we do not have

access to full US patent texts, the title of a patent is usually very informative about its content. We

previously showed that a title-based machine learning algorithm predicts the technological classifi-

cation of the patent with nearly 90% accuracy. Titles for UK patents are embedded in the digitized

text for 1870–1899 and collected from PATSTAT for the later years; titles for US patents are collected

from PATSTAT throughout the sample period.

We define the backward inverse-document frequency associated with each word w. This expresses

the inverse frequency with which the word w appears in US patents p issued until year t. Formally,

we have

BIDFw,t ≡ log
(

Number of Patents Issued Before t
1 + Number of Patents Issued Before t that contain word w

)
(A.1)

Then, to each patent-word pair, we associate the term frequency variable that counts the number of

instances word w appears in patent p, normalized by the length of the patent. With a slight abuse of

notation, let p denote the patent’s index and the set of words it contains. We shall have

TFwp ≡
∑c∈p 1(c = w)

∑c∈p 1(c)
(A.2)

where the numerator returns how many times word w appears in patent p, and the denumerator is

simply the number of words in patent p. Then, we define the TF-BIDF associated with word w, patent

p at time t as the product between these two terms:

TF-BIDFwp,t ≡ TFwp × BIDFw,t (A.3)

and, thus, the vector TF-BIDFp,t collects the term frequency-backward inverse document frequency

for all words w in p. For comparability, the vector TF-BIDFp,t is normalized by its norm to have unit
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length.

We compute the TF-BIDFp,t vectors for US and UK patents, but the BIDFw,t are computed on the cor-

pus of US patents only. Then, we compute the cosine similarity ρi,j between each UK patent i and each

US patent j. This allows us to define two variables. First, we seek to measure the similarity between

British innovation and previous American patents. This yields a measure of backward similarity that,

for the sake of the paper’s narrative, we define as “copying”. Formally we define

Backward Similarity
τ
i ≡ ∑

j∈F−τ
i

ρi,j (A.4)

where the set F−τ
i denotes the set of US patents issued within τ years from the issue year of patent

i. This measures the degree of similarity between a given patent in the UK and previous patents in

the US. Second, we define a measure of “originality” of UK patents compared to previous US patents.

This leverages the insight of Kelly et al. (2021), who suggest that innovative and influential patents

are those that are most dissimilar from existing innovation while at the same time retaining semantic

proximity with subsequent patents. Formally, we have

Excess Forward Similarity ≡
∑j∈F+τ

j
ρi,j

∑j∈F−τ
i

ρi,j
(A.5)

where F+τ
i denotes the set of US patents issued within τ years after the issue year of patent i. In the

baseline analysis, we set a symmetric window of τ = 5 years around each patent’s issue date. In

Tables C.1 and C.9, we report the results using an alternative threshold of ten years. Moreover, in the

same Table, we report the results obtained by netting out year and technology class fixed effects at

the patent level. As noted by Kelly et al. (2021), this ensures we do not conflate shifting terminology

fashions in the similarity measures.

A.II.7 Census Linking

To perform the individual-level analysis on neighborhood emigration, we link the inventors listed

on patent documents issued between 1881 and 1900 to the 1891 population census. The availability

of the census data determines the sample restriction. First, we seek to follow the inventing activity

of individuals over time. Hence, we want to link patent records to one single census. When linking

inventors to the census, we exploit the location listed on the document to restrict the pool of potential

matches in the census. This practice, however, assumes that the inventor did not move between the

time when the patent was granted and the closest census year. This assumption is sensible for patents

issued not too far from the closest census year. Since the records of the 1871 census are not available,
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we restrict the attention to patents issued no earlier than ten years from the closest census, i.e., 1891.

Matching Algorithm Given a patent p, define the set of inventors as Ap = {A1, . . . , Anp}. Most

patents are solo-authored in this period, meaning |Ap| = 1. Call Lp = {ℓ1, . . . , ℓmp} the set of loca-

tions patent p is associated to. Each ℓ is a couple of latitude-longitude coordinates. LetLparish

p be the set

of parishes associated with each coordinate. Analogously, let Lneighbor parishes

p , Ldistrict

p , Lneighbor districts

p ,

and Lcounty

p be the set of, respectively, neighboring parishes, districts, neighboring districts, and coun-

ties where each coordinate locates. Notice that these are progressively coarser units: parishes are con-

tained in districts, which form counties. Unfortunately, we do not know the inventor-location pair.

To match the generic Ap, we thus perform the following operations:

1. With a slight abuse of notation, let Lparish

p —and, analogously, Ldistrict

p and Lcounty

p —denote the

set of census records in each parish, district, and county within the respective sets.

2. Take all entries i within the set of parishes Lparish

p that are at least 18 when the patent p is filed.

Let yeari and tp respectively denote the birth year of i and the issue date:

Mparish

Ap
=
{

i ∈ Lparish

p

∣∣∣ tp − yeari ≥ 18
}

(A.6)

3. For each i ∈ Mparish

Ap
, compute the distance between the name and surname of i, and that of Ap:

Similarity
Ap
i = α × Name Similarity

Ap
i + (1 − α)× Surname Similarity

Ap
i (A.7)

for some α ∈ [0, 1]. In our baseline setting, we pick α = .3 to assign a larger weight to the

surname.

4. Define the set of acceptable matches as those with the highest similarity with the given Ap:

Mparish

Ap
=

 i ∈ Mparish

Ap

∣∣∣ Similarity
Ap
i = max

i′∈Mparish

Ap

Similarity
Ap
i′

 (A.8)

and define Similarity
Ap

as the similarity between all elements in Mparish

Ap
and Ap. Notice that

this is the same across all i ∈ Mparish

Ap
.

5. Set a threshold τ such that if Similarity
Ap < τ, Mparish

Ap
= ∅, otherwise pass.

6. If Mparish

Ap
is not empty, then inventor Ap is matched to all records in Mparish

Ap
. If empty, repeat

steps 2–4 conditioning on records in the coarser matching set.
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Patent data have the clear advantage that we have geographical information on the location of in-

ventors. Inventors are mobile, however, and there may be a considerable time between the moment

the patent is granted and the 1891 census. For these reasons, we incrementally exploit geographi-

cal information on the inventor’s location. First, we look for high-quality matches within the same

parish where the patent is filed. We then progressively expand the set of records by coarsening their

geographic location to their neighboring parishes, districts, neighboring districts, and counties.

Evaluation of the Matching In Figure A.4, we report the matching rate of this exercise. We match

approximately 75% of the inventors in the sample. The share remains constant throughout the pe-

riod. Almost 50% of the matches are attained at the parish level—the smallest geographical layer we

consider. About half of the remaining matches are obtained within the neighboring parishes of the

location indicated in the patent document. These figures indicate that mobility remained relatively

low within the relatively narrow time frame around the census we consider.

Aplausible concern is that the probability of obtaining a link is not random. This may be the case if, for

instance, more successful inventors were more educated and, hence, more likely to report their names

correctly in the census. On the other hand, if successful inventors were relatively more mobile, we may

fail at linking them because we may need to go national to obtain a match, which would most likely

be dropped because of the multiple-match issue. These hypotheses are difficult to test. In Figure A.5,

however, we report the overall distribution of the number of matches in the sample. Approximately

60% of the inventors listed in the patent grants are linked to one single census record, and the share

of inventors linked to more than 10 records is negligible. In fact, we can restrict the analysis to single

matches and obtain very similar results. In Table A.2, we compute the correlation between the number

of matches in our sample and a set of individual observed characteristics. In Panel A, we have the age

and the residence divisions while in Panel B we list the occupation reported in the census. The number

of matches is correlated with some of these characteristics, but the magnitude of this association is

small, except for the fact that inventors living in Wales have substantially more matches in the sample.

To ensure that Wales does not drive our results, we replicate the main results, exclude them from the

sample, and confirm that the results hold.
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A.III Linked Migrants Sample

A.III.1 Data Sources

We rely on two sources of externally compiled data.
3

For the US, we have access to the IPUMS full-

count non-anonymized census (Ruggles et al., 2021). A census was taken in the US every ten years

starting in 1790, except for 1890. Until 1840, the census was run at the household level. From 1850

on, instead, we have detailed individual information on the universe of the US population.
4

For con-

fidentiality, these data are available up until 1940. Our dataset, therefore, contains snapshots of the

entire US population at any given decade between 1850 and 1940, although for the sake of this paper,

we restrict to the years 1870-1930. Crucially, we have access to the non-anonymized version of the

IPUMS data. Hence, we also know each individual’s recorded name and surname besides publicly

available information.

In the UK, the I-CeM data mirrors the IPUMS (Schurer and Higgs, 2020) content. More precisely, it

contains information on the universe of people living in England, Scotland, and Wales. Similarly to

the US and virtually every other census, it was run at a decade frequency from 1851 until 1911. No

census was taken in 1871. As with the IPUMS data, we can access the full-count, non-anonymized

version of the dataset. Besides publicly available information, this contains full names and addresses

of the universe of individuals living in the UK at any given decade.

A.III.2 Linking Algorithm

Our methodology relies on Abramitzky et al. (2021). This dataset tackles the problem that neither the

US nor the UK—nor any other European countries—recorded where British immigrants came from

within the UK. Thus, we try to match British immigrants residing in the US with their entry in the UK

census, which records where they come from at a granular geographical level.
5

More precisely, we

take the stock of British residing in the US in a given census year—say, 1900—and match them with

their entry in the preceding UK census—in this case, 1891.
6

This implies that we measure the flow of

British immigrants over time rather than their stock.

We use three variables to link individuals: first name, surname, and birth year. The baseline sample

3
We are deeply thankful to IPUMS and I-CeM for allowing us access to their confidential data. Without their help, this paper

would not have been possible.

4
By US population, we refer to the universe of individuals who lived in the US at a given point in time.

5
Since women usually change their name upon marriage, we cannot match them. This is a common problem in linking

algorithms (Abramitzky et al., 2021).

6
Since no census was taken in the UK in 1871, we link the 1880 US census to the 1861 UK one. This is not overly problematic

because we can still match all those aged ten or older in 1871.
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we link consists of individuals who report, in the US census, either England or Wales—or analogous

denominations, such as Great Britain—as their country of origin. In the 1900 census, we take all those

who immigrated between 1870 and 1899. In the subsequent censuses, until 1930, we retrieve stock

of those who immigrated in the preceding decade. Then, to match each unit in the sample—call the

generic one A—to an entry in the UK census, we perform this sequence of operations:

1. Take the census that precedes the immigration year of A. Hence, for instance, we match all those

who immigrated in 1896 to the 1891 census.

2. Select all records in that census with the same reported birth year as A—call the resulting sample

MA = {mA
1 , . . . , mA

N}.

3. Compute a string-similarity measure between the name and surname of A and that of all ele-

ments of MA
. In other words, for every mA

i ∈ MA
, compute

7

Similarity
A
i = α × Name Similarity

A
i + (1 − α)× Surname Similarity

A
i (A.9)

for some α ∈ [0, 1]. In our baseline setting, we set α = 0.3 to give higher weight to the surname.

4. The set of matches is defined as

MA
=

{
mA

i ∈ MA
∣∣∣ Similarity

A
i = max

mA
i′ ∈M

A
Similarity

A
i′

}
(A.10)

which means that we restrict the set of possible matches to include only those whose similarity

score with the entry in the US census A is the largest.

5. Finally, for a given threshold τ > 0, we select only the possible matches whose similarity score

is above τ. The set of effective matches thus boils down to:

M̃A
τ =

{
mA

i ∈ MA
∣∣∣ Similarity

A
i ≥ τ

}
(A.11)

Clearly, M̃A
can ideally be empty, meaning that A has no effective matches. It can have one

element, in which case we refer to it as a “perfect match,” or it can have multiple matches. In

our baseline exercise, we set τ = 0.7 as we see a clear elbow in the distribution of similarities

there.

7
We cannot simply match on exact same name and surname because coding errors are commonplace in historical census

data (Abramitzky et al., 2021).
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We evaluate the distance between two strings i and j in terms of their Jaro-Winkler similarity dij:

dij ≡ d̂ij + ℓp(1 − d̂ij) (A.12)

where

d̂ij ≡


0 if m = 0

1
3

(
m
|i| +

m
|j| +

m−t
m

)
else

(A.13)

where m is the number of matching characters, |i| is the length of string i, t is half the number of

transpositions, ℓ is the length of common an eventual common prefix no longer than four characters

between i and j, and p = 0.1 is a constant scaling factor. Two characters are matching only if they are

the same and are not farther than

⌊
max(|i|,|j|)

2

⌋
− 1. Half the number of matching characters in different

sequence order is the number of transpositions.
8

The Jaro-Winker distance has been shown to perform well in linking routines (Abramitzky et al., 2021).

In our particular case, however, this metric outperforms more standard string dissimilarity metrics,

such as the cosine or the Levenshtein distances, because the Jaro-Winkler assigns a “bonus” score to

strings starting with closer initial substrings. In addition, coding errors are far more frequent at the

end of names and surnames than at the beginning. A manual assessment confirmed that the Jaro-

Winkler metric outperforms other measures in our setting.

A.III.3 Internal and External Validation

Matching Rate In Figure A.7, we report the key matching rate statistics of the linked sample. In par-

ticular, Figure A.7a displays the crude matching rate over time, i.e., the share of English immigrants

recorded in the US census linked to at least one record in the UK census. Since it is impossible to

link British immigrants born after the last census before they migrated (i.e., those who migrate when

younger than ten), we distinguish between the full sample in blue and the “matchable” sample in

red. The matching rate in the matchable sample is approximately 65%. It declines from 75% in the

1870s to 60-65% and remains constant after that. The large jump in 1880 in the crude matching rate

is because the 1871 census is unavailable; hence, between 1870 and 1881, we cannot match anyone

younger than 20—as opposed to 10 in the rest of the sample—when they migrated. The matching

rate is relatively high compared to other algorithms, such as Abramitzky et al. (2021). In the next

section, we thus asked whether matched and un-matched immigrants are balanced on observables.

Panel A.7b replicates the previous plot but reports the absolute number of emigrants in the sample

and those linked instead of the percentage shares.

8
The Jaro-Winkler distance has been recently employed in the economic history literature for intergenerational linking pur-

poses by, among others, Abramitzky et al. (2021)
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In Panel A.7c, we display the distribution of the number of matches for linked immigrants. A large

fraction (≈ 45%) of immigrants are paired with a single entry in the UK census. Approximately 60%

are matched to one or two entries. Beyond this threshold, multiple matches are more common, and the

average number of matches is 9.4. To ensure that multiple matches do not confound our analysis, we

always weigh emigrants by the inverse of the number of matches. In unreported analyses, however,

we confirm that all our results remain qualitatively unchanged even if we exclude instances with

more than two matches from the analysis sample.

In Figure A.8, we report the distribution of the name and surname similarities between the records of

British immigrants in the US census and their links in the UK census. The dashed black lines plot the

threshold below which we reject the link (.9). In the sample; we find that if an immigrant is linked to

at least one record in the UK census, then the quality of the match is high, as more than 90% of the

sample lies right to the .9 line. However, it is important to note that for a link to be accepted in the

final sample, we require that both the name and the surname similarities be above 0.9.

Balance of Linked Emigrants In Table A.3, we report the correlation between the probability that a

British immigrant in the US is linked to an entry in the UK census and a set of individual-level vari-

ables observed in the US census. Column (1) reports the sample value of each variable for unmatched

immigrants, and column (2) refers to matched immigrants. Column (3) reports the difference between

the two groups. As one may expect, the linking probability does not correlate with either literacy—

since educated immigrants could present systematically more precise census records—or income, an-

other proxy for educational standing. Matched immigrants are less likely to work as professionals, in

clerical occupations, and as sales workers. These differences, however, are small in magnitude and

affect a small portion of the population. Manufacturing workers (skilled “craftsmen” and unskilled

“operatives”), instead, account for almost 60% of the population and do not appear to be selected in

terms of their linking probability. In terms of their region of residence, emigrants living in the North-

east are more likely to be linked, although the difference is minimal in magnitude (less than 2%).

They are also less likely to reside in the South, but again, this difference affects only approximately

1% of the sample. Overall, Table A.3 provides reassuring evidence that linked emigrants are primar-

ily not selected on observable characteristics and, importantly, the statistically significant differences

are minor in magnitude.

Validation of the Data It is challenging to validate our sample with external data because, as we note

in the main text, we do not have primary geographically disaggregated data on the origin of British

emigrants. Baines (2002) attempts to estimate decade-level data for British counties between 1880

and 1910. To the best of our knowledge, these estimates are the only alternative source we can use to

gauge the plausibility of our data. They nonetheless present important issues. First, they are based on
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interpolations from population data tabulated from the population census. First, the author tries to

account for internal migration, which remains an important confounding factor. Second, the estimates

refer to aggregate emigration outflows, whereas our data precisely captures emigration to the United

States. Third, the estimates are computed at the county level. Counties are coarse geographical units.

Hence, this dataset does not warrant any modern econometric exercise.

Keeping these shortcomings in mind, in Figure A.9, we aggregate our data at the county-decade level

and plot it against the estimates produced by Baines (2002). Both series are taken in log terms to

reduce the influence of extreme values. Moreover, we weight the data by county population. We do

so to ensure that the resulting correlation reflects the actual sizable differences in population across

counties. We estimate a positive and statistically significant correlation between our data and the

Baines series. Our figures are generally lower than those provided by Baines, which plausibly reflects

that our data do not cover emigration towards countries other than the United States. Overall, we

view this graph as providing supporting evidence of the plausibility of our dataset.

Finally, in unreported results, we construct an intergenerational linked sample from the English and

Welsh population census. This sample allows us to follow individuals over two consecutive censuses

between 1851 and 1911. Using this sample, we find that individuals recorded in census t that also ap-

pear as emigrants between census t and t + 10 are 60% less likely to be linked to the census in t + 10

than those that do not appear in the linked migrant sample. Moreover, eliminating from the emigra-

tion data those linked to the census in t + 10 yields qualitatively and quantitatively similar results to

those shown in the paper. The intergenerational linking algorithm presents important issues, as de-

scribed in Abramitzky et al. (2021), but provides additional evidence supporting the informativeness

of our intergenerational linking exercise.

A.III.4 Return Migration Data

Following the same linking algorithm described before, we construct a linked sample of return mi-

grants. This identifies English and Welsh immigrants in the US in year t and looks for possible matches

in the UK census in year t + 10, using a minor variation on the algorithm described previously. Since

the last UK census is the 1911 one, we face a hard upper bound for the coverage of return migration,

as we can only construct return migrants linked samples spanning the period 1870–1910.

Previous research suggests that return migration rates during the Age of Mass Migration were sub-

stantial (Bandiera et al., 2013), although probably less so in the UK than in second-wave countries

such as Italy. Using our linked sample methodology, we find an approximately 30% return migration

rate, broadly consistent with previous estimates.
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Tables

Table A.1. External Validation of Newly Digitized Patent Data

Years 1853–1876 Years 1877–1899

Year New Data Hanlon COI Year New Data Hanlon COI

(1) (2) (3) (4) (5) (6) (7) (8)

1853 2926 3042 1877 4937 4940 5133

1854 2737 2715 1878 5338 5333 5258

1855 2868 2955 2883 1879 5312 5325 5442

1856 3204 3102 3003 1880 5531 5509 5211

1857 3175 3197 3108 1881 5762 5745 5760

1858 3071 2999 2988 1882 6244 6233 6187

1859 3031 2998 3008 1883 6118 5981 6075

1860 3231 3190 3161 1884 9809

1861 3279 3272 3303 1885 8695

1862 3479 3486 3485 1886 8913

1863 3312 3308 3411 1887 9070

1864 3245 3257 3286 1888 9283

1865 3391 3378 3436 1889 10315

1866 3422 3452 3481 1890 10376

1867 3720 3720 3723 1891 10768

1868 3976 3984 3955 1892 11454

1869 3837 3781 3781 1893 11986

1870 3459 3405 3323 1894 11664

1871 3574 3525 3542 1895 12243

1872 3951 3967 4013 1896 13619

1873 4261 4282 4336 1897 14304

1874 4419 4491 4533 1898 13105

1875 4576 4557 4537 1899 13267

1876 5048 5064 5085

Notes. This Table reports the total number of patents in England and Wales between 1853 and 1899. Columns

(2) and (6) report the series constructed from our novel dataset; columns (3) and (7) tabulate data from A Cradle
of Inventions (Finishing Publications, 2018); columns (4) and (8) report data from Hanlon (2016). The A Cradle
of Inventions series potentially stretches until 1899. However, after 1883 there is no way to distinguish between

patents granted and applications. Hence we do not report figures for these later years (Nicholas, 2014). Data

from Hanlon (2016) only cover the years 1855–1883. Referenced on page(s) A6.
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Table A.2. Balance of Linked Inventor Sample

Unconditional Year FE

Mean Std. Err. Mean Std. Err.

(1) (2) (3) (4)

Panel A. Age and Place of Residence

Age -0.002 (0.002) -0.002 (0.001)

London -0.197 (0.144) -0.177 (0.128)

South East -0.362*** (0.132) -0.342*** (0.114)

East -0.246* (0.149) -0.242* (0.136)

Yorkshire -0.324** (0.137) -0.308** (0.122)

South West -0.412*** (0.124) -0.404*** (0.114)

West Midlands 0.022 (0.199) 0.022 (0.186)

East Midlands -0.246* (0.135) -0.230* (0.119)

North East -0.260** (0.133) -0.234** (0.110)

North West -0.165 (0.159) -0.169 (0.154)

Wales 1.809*** (0.227) 1.752*** (0.186)

Panel B. Occupation

Agriculture 0.528 (0.365) 0.494 (0.320)

Chemicals -0.209** (0.105) -0.189** (0.083)

Construction -0.061 (0.076) -0.055 (0.068)

Engineering -0.070 (0.062) -0.063 (0.052)

Liberal Professions -0.186*** (0.071) -0.180*** (0.064)

Metallurgy 0.114 (0.081) 0.109 (0.075)

Public Administration -0.150 (0.094) -0.148* (0.089)

Textiles -0.119 (0.093) -0.109 (0.083)

Trade -0.164* (0.084) -0.155** (0.072)

Transports 0.016 (0.027) 0.018 (0.024)

Utilities -0.178** (0.080) -0.170** (0.071)

Notes. This Table reports the correlation between the number of matches in the linked inventor sample and a set

of individual-level co-variates observed in the census. In columns (1–2), we display the unconditional correla-

tion and the associated standard error. In columns (3–4), we repeat the exercise but control for the issue year of

the patent. Standard errors are clustered at the county level and are displayed in parentheses. Referenced on

page(s) A10, C47.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table A.3. Balance of Linked Emigrants Sample

Correlation with Matching Status

= 1 if

Not matched

= 1 if

Matched

Diff. Std. Err.

(1) (2) (3) (4)

Panel A. Individual Characteristics

Literacy 0.885 0.965 0.079 (0.069)

Income 3.147 3.141 -0.006 (0.011)

Panel B. Occupation

Professional 0.053 0.041 -0.012*** (0.002)

Farmer 0.085 0.091 0.006 (0.010)

Manager 0.066 0.059 -0.006 (0.004)

Clerical 0.058 0.045 -0.013*** (0.004)

Sales 0.062 0.047 -0.014*** (0.001)

Craftsman 0.260 0.281 0.020* (0.010)

Operative 0.310 0.330 0.020 (0.014)

Service 0.050 0.049 -0.001 (0.003)

Laborer 0.057 0.056 -0.000 (0.004)

Panel C. Region of Residence

North East 0.519 0.539 0.019*** (0.005)

Midwest 0.277 0.271 -0.006 (0.005)

South 0.057 0.046 -0.011*** (0.001)

West 0.146 0.145 -0.002 (0.008)

Notes. This Table reports the correlation between the matching probability in the migrants-linked sample and

a set of individual-level characteristics observed in the US census. The dependent variable equals one if the

immigrant is linked and zero otherwise. We report the average value of the row variable for unmatched (column

1) and matched immigrants (column 2), as well as the difference between the two groups (column 3) along with

its standard error clustered at the census year level (column 4). All row variables are indicators except income,

which is the log of the occupational income score. Standard errors are clustered at the census year level and

are displayed in parentheses. Referenced on page(s) 11, 29, A14, A14.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Figures

Figure A.1. Sample Annotated Patent Documents: the Bessemer Process and the First Mod-

ern Safety Bicycle

(a) Henry Bessemer’s 1856 Patent (b) John K. Starley’s 1885 Bicycle Patent

Notes. This figure displays two sample patent documents in our dataset. Panel A.1a was granted to Henry

Bessemer in 1856 to invent the famous eponymous process for the mass production of steel from molten pig

iron. Panel A.1b was granted to John Starley in 1885 to invent the first modern bicycle, which would soon

revolutionize mobility in Europe and the US. Colors mark different variables that we structure in the dataset:

(i) in brown, the short title; (ii) in red, the complete title (iii) in green, the type of protection granted; (iv) in

blue, the author(s) name(s); (v) in yellow, the author(s)’s address(es); (vi) in light blue, the application date;

(vii) in purple, the issue date; (viii) in black, the patent text that continues in the rest of the patent document;

(ix) in dark purple, the author(s) profession(s). Not all (i–ix) data are available on every patent and in each year.

Referenced on page(s) A5.
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Figure A.2. Number and Composition of Patents Over Time

(a) Time Series of Patents
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Notes. This Figure reports time-series information on the innovation activity in Britain between 1853 and 1939.

In Panel A.2a, we report the total number of patents granted in the UK over the period. The blue dots report

the newly digitized data that we assembled for this paper; the red dots report tabulations from the Patstat

repository. In Panel A.2b, we plot the share of patents granted over time across technology classes. Referenced

on page(s) 13.
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Figure A.3. Geographic Distribution of Patents Across Technologies

(a) Chemistry (b) Electricity (c) Engines, Pumps

(d) Metallurgy (e) Textiles (f) Transporting

Notes. This Figure reports the intensity of patenting activity across districts over 1880–1939 for selected tech-

nology classes. Districts are displayed at 1891 borders. To assign patents to districts, we geo-reference the

address of each author listed in the patent document and assign districts based on historical district borders.

Black edges display county borders. The London area is displayed separately. Darker shades of blue indicate

increasing quantiles of the patenting rate, defined as the percentage ratio between the number of patents in a

given technology class and the overall number of patents produced. Referenced on page(s) A6.
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Figure A.4. Matching Rate of Linked Inventors Sample
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Notes. This Figure reports the matching rate of the linked sample of inventors. The records of the inventors who

obtained a patent between 1880 and 1899 are linked to the 1891 population census, as detailed in the main text.

The matching rate, i.e., the share of inventors successfully matched to the census, is reported on the y-axis in

percentage points. The matching rate is broken down by the geographic layer of aggregation where the match

is attained. Hence, we match over 75% inventors to the census throughout the period, and among those, the

census record of slightly more than 50% of them is found in the same parish where the inventor is recorded

living on the patent document. Referenced on page(s) A10.
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Figure A.5. Number of Matches in Linked Inventor Sample

(a) Pooled Data
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Notes. This Figure reports the number of census entries each inventor in the linked sample is matched to. Panel

A.5a reports the overall distribution, while Panels A.5b–A.5e report the distributions broken down by geo-

graphic layers. In each graph, we separately report the average number of matches and its standard deviation.

Referenced on page(s) A10.
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Figure A.6. Geographic Distribution of Linked Inventors

Notes. This Figure displays the spatial distribution of inventors across districts between 1880 and 1900. Each

marker reports one inventor, defined as an individual who obtains at least one patent over the sample period.

To retrieve the coordinates of the inventors, we first link population censuses, whose entries are, in turn, geo-

referenced. The background map displays black counties and gray districts at historical borders in 1891. We

highlight the ten largest urban centers at the time. Referenced on page(s) 13.
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Figure A.7. Matching Rate and Number of Matches
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Notes. This Figure reports information on the matching performance of the emigrants’ linked sample. In Panel

A.7a, we display the matching rate, i.e., the share of emigrants recorded in the US census that are successfully

linked to at least one entry in the UK census. The blue dots refer to the overall sample, and the red dots refer

to the emigrants who could be recorded in the UK census (see main text for more precise information). In

Panel A.7b, we plot the overall number of immigrants in the US census (in green), the number of those that are

matched (in red), and the number of matches that we accept (in blue). Panel A.7c reports the distribution of

the number of matches, where the last bin collects all those with more than 20 matches. Referenced on page(s)

10, A13.
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Figure A.8. Quality of Matches
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Notes. This Figure reports the distribution of the match quality in terms of name and surname similarity for

the set of records with no more than two matches in the baseline sample. The similarity measure we use to

construct the links is the Jaro-Winkler. This string metric measures the edit distance between the name and

surname of the British immigrant recorded in the US census and their match(es) in the UK census. Panel A.8a

reports the distribution of the name similarity; Panel A.8b refers to surnames. The vertical lines mark the quality

thresholds we impose for a match to be part of the final linked sample. Referenced on page(s) A14.
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Figure A.9. External Validation with Out-Migration Estimates
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Notes. This Figure reports the correlation between out-migration in our linked inter-census sample and the

estimates produced by Baines (2002). These estimates are at the county level and span 1880–1910. We thus

aggregate our data by county. Furthermore, we exclude the London area because we cannot map our data

to Baines’ geographical divisions. Both variables are expressed in log terms. The gray dots display county-

decade observations. Counties are weighted by their population. The blue dots report binned means. The red

line overlays a linear fit between the variables. The Figure also reports the regression coefficient, its robust

standard error, and the R2
of the regression. Referenced on page(s) 11, A15.
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Figure A.10. Geographic Distribution of Emigration Rates Over Time

(a) 1870s (b) 1880s (c) 1890s

(d) 1900s (e) 1910s (f) 1920s

Notes. This Figure reports the distribution of US emigrants across districts in England and Wales over the

period 1870–1940 by decade. Data are from the matched emigrants sample. The number of emigrants in each

decade is normalized by population in 1891 and is expressed in percentage terms. Districts are displayed at

their 1891 historical borders. Black edges also display historical county borders. Out-migration is cross-walked

to consistent historical borders. Lighter to darker shades of blue indicate increasing quantiles of the emigration

rate. The London area is displayed separately. Referenced on page(s) 11.
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B ADDITIONAL RESULTS

This section presents in some detail several additional results that are mentioned in passing in the

main text: the selection of British emigrants (Section B.I), the long-run association between emigration

and innovation (Section B.II), and the possibility that immigrants sort into counties that are similar to

their origin area (Section B.III).

B.I Selection of British Emigrants

The historical scholarship argues that the English and Welsh mass migration to the US starkly differed

from that of other countries (Berthoff, 1953; Baines, 2002). Unlike other European countries, such as

Germany, Sweden, or Italy, UK emigration to the US in the second half of the nineteenth century was

not a low-skilled rural phenomenon. Especially after the 1880s, people started to leave urban, indus-

trial areas. Importantly, emigrants did not represent the bottom of the human capital distribution, as

was the case in Italy (Spitzer and Zimran, 2018) or Norway (Abramitzky et al., 2014). This is crucial

for our analysis, as it is unlikely that illiterate farmers would facilitate the flow of novel knowledge

back to their origin areas. Even if this was the case, it would be equally unlikely that those rural ar-

eas would have the ability to reproduce US patents. While these considerations are helpful for our

analysis, they largely rely on anecdotal evidence or analyses of incomplete census sources. In this

section, we present evidence on the selection of English emigrants to the United States and returning

migrants to the United Kingdom relative to the staying population in the UK. To construct these data,

we exploit the linked US-UK migrants sample and the English population census.

Table B.1 presents. Column (1) refers to non-migrants, and columns (2) and (5) refer to emigrants

and return migrants, respectively. In columns (3) and (6), we compute the difference between non-

migrants and emigrants and non-migrants and return migrants, respectively. Emigrants are more

likely than stayers to work as engineers and as manufacturing workers in metallurgy and textiles.

Unsurprisingly, they are less likely to work in public administration and as liberal professionals, since

those occupations could not be transferred overseas. Overall, these patterns confirm historical evi-

dence by, among others, Baines (2002), who describes transatlantic emigrants as a positively selected

group of entrepreneurial individuals well-versed in the manufacturing crafts, especially in the second

half of the Nineteenth century. Return migrants appear somewhat different. They are more likely to

work in construction, a lesser-skilled sector compared to emergent industrial jobs, and are more likely

to work as professionals, public officers, in transports—which, in this period, would mainly comprise

railway workers—and as utility workers. According to this sketched first inquiry, it is likely that the

decision to return to the United Kingdom was relatively more common among those who were less

successful in their American enterprise.
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Individuals who migrated to the United States are more likely to originate from the North West—

including the industrial Lancashire districts—South West—especially the rural areas of Cornwall and

Devon—and Wales. As mentioned in the main text, the origin of emigrants shifts over time from the

mainly rural areas in Southern England to the industrial regions in the North and the Midlands.

It appears that the probability of returning was not homogeneous across sending regions. Return

migrants are less likely to reside in the East, in Wales, and in the West Midlands, while they are

more common in the London area and, as are the emigrants, in South West. The different geographic

distribution of emigrants and return migrants is crucial when disentangling their contributions to

innovation activity in the UK.

B.II Long-Run Association between Emigration and Innovation

We now investigate the persistence of the effect of exposure to foreign knowledge through migration

ties on the direction of patenting activity. While this exercise cannot be tasked with any claim of

causality, it nonetheless suggests the possible far-reaching effects of out-migration on innovation.

We estimate the following regression:

Patentsik,t = αi×k + αt + ∑
τ∈T

βτ [Knowledge Exposureik × 1 (t = τ | t = τ + 1)] + ε ik,t (B.1)

where i, k, and t denote a district, technology class, and year, respectively. In this setting, we have

t ∈ [1940, 2015]. The term Knowledge Exposureik refers to knowledge exposure in the years 1900–

1930, i.e., before the sample period. To reduce noise in the estimated βτ
coefficients, we conflate years

in T in biennial windows. The estimated set of βτ
expresses the conditional correlation between

historical exposure to knowledge exposure and innovation activity in the two-year window indexed

by τ.

In Figure B.1, we report the set of estimated βτ
over time. The correlation between historical knowl-

edge exposure and patenting activity remained positive and significant until the early 1980s, although

it—reassuringly— decreased over time. We interpret this as evidence that exposure to foreign knowl-

edge through migration ties has a potentially long-lasting effect on the composition of innovation

activity over time. In Table B.2, we re-estimate model (B.1), sector-by-sector, by decade. Compared to

(B.1), we can thus only include district and decade-fixed effects. Columns report the estimated βτ
by

decade. The estimated correlation between historical exposure and patenting decreases over time in

all sectors and, by the 1990s, it is no longer significant in many.
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B.III Assortative Matching of Emigrants in the United States

In this section, we lay down a simple framework to test whether British immigrants sort into US

counties depending on the innovation similarity between the settlement location and their origin

district. Let Pj,t = {p1j,t, . . . , pNj,t} denote the patent portfolio of county j in decade t, whose generic

entry pkjt returns the number of patents in technology class k. Analogously, let Pi,t be the portfolio of

district i. We define a metric of innovation similarity as follows:

Innovation Similarityij,t ≡
P⊺

i,tPj,t

∥Pi,t∥ · ∥Pj,t∥
=

∑k pki,t pkj,t√
∑k p2

ki,t

√
∑k p2

kj,t

≤ 1 (B.2)

which is a simple cosine similarity. The similarity measure returns a value of one if the patent port-

folios of district i and county j are equal, meaning their composition across classes is the same. The

index is normalized between zero and one.

We then estimate variations on the following simple linear probability model:

Emigrantsi→j,t = αi×j + αt + β × Innovation Similarityij,t + Xij,tΓ + ε ij,t (B.3)

where the dependent variable is the flow of emigrants from district it to county j in decade d, and

αi×j denotes county-by-district fixed effects. Controlling for the dyadic fixed effects αi×j is important

because it implies that β̂ relies on time variation in innovation similarity rather than pre-determined

district-county factors that persist over time. The coefficient β thus yields the correlation between

the similarity of innovation activity and migration flows. Standard errors are two-way clustered by

district and county. Under sorting, one would expect β̂ > 0.

We test this prediction in Table B.3. We do not find evidence that the innovation similarity between

origin and destination areas explains migration patterns. The sign of the regression coefficients is

unstable and, once we control for time-varying shifters at the county or district level, negative and

statistically significant. In columns (4–6), we estimate the same regressions on the smaller sample of

county-district pairs with positive migration flows. The results remain largely similar. We do not wish

to over-emphasize these results. Our measure of innovation similarity, while intuitive, may be subject

to measurement error, which may reduce the precision of the estimates. Taken together, however, we

interpret these results as evidence that it is unlikely that assortative matching played a pivotal role in

determining the location choice of immigrants.
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B.IV A Case Study of a US Technology Shock: The Great Influenza Pandemic

Our data-driven approach to isolate shocks to US innovation activity yields rich variation in the num-

ber and timing of innovation shocks. However, it is hard to trace those shocks to concrete periods of

heightened innovation activity. In this section, we discuss one such example. Berkes et al. (2023) doc-

ument that innovation activity in pharmaceuticals increased in response to higher mortality due to

the Great Influenza pandemic that spread throughout the United States between 1918 and 1919. We

thus ask whether our algorithm to identify innovation shocks reflects the heterogeneous responses to

the pandemic across counties and technologies.

We follow the approach of the original paper and use the US mortality statistics to construct a measure

of excess mortality due to the Flu. This “Excess Deaths” measure is defined as

Excess Deathsj ≡
1
2 ∑1919

t=1918 Deathsjt
1
3 ∑1917

t=1915 Deathsjt
, (B.4)

where j and t denote a county and year, and Deathsjt is the number of individuals who died in county

j and year t. Mortality data are available since 1915—hence, the running window of 1915–1917 to

compute the pre-pandemic average mortality—and cover approximately 1,170 counties, which ap-

proximately account for 50% of the US population in 1920.

We estimate two specifications. The double-differences estimator compares counties by the severity

of the influenza, before and after 1918:

yjkt = αj×k + αk×t + β ×
(
Excess Deathsj × Postt

)
+ ε jkt, (B.5)

where j, k, and t denote a county, technology class, and year. The terms αj×k and αk×t denote county-

by-technology and technology-by-time fixed effects, and Postt is equal to one for t ≥ 1918 and zero

otherwise. In this specification, we leverage across-county variation in influenza mortality. The sec-

ond specification is a triple-difference regression:

yjkt = αj×k + αk×t + αj×t + β ×
(
Excess Deathsj × Postt × Pharmak

)
+ ε jkt, (B.6)

where we further include county-by-year fixed effects (αj×t) and the treatment includes an interac-

tion with a term (Pharmak) which is equal to one if k is a pharmaceutical-related technology (“health,

amusement” and “chemistry”) and zero otherwise. In this case, we further leverage cross-technology

variation because we expect the influenza to only affect pharmaceutical-related innovation. Both
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models are estimated over a 10-year window around the influenza (1910–1930).

First, we replicate the baseline results of the original paper. In Table B.4 (columns 1–3), we use

the (log 1+) number of patents as the dependent variable. Column (1) refers to the triple differ-

ences specification (B.5), whereas in columns (2) and (3), we estimate regression (B.6) separately on

non-pharmaceutical and pharmaceutical patenting. Exposure to the influenza does not impact non-

pharmaceutical patenting (column 2), whereas it presents a positive and large effect on pharmaceutical-

related innovation (column 3). Moving from the 25
th

(1.03) to the 75
th

(1.20) percentile of excess deaths

increases innovation by 25%. This heterogeneity is reflected in the triple-differences estimate, which

similarly indicates that exposure to the influenza increased innovation in pharmaceuticals relative to

all other technology classes.

Second, we explore the effect of the influenza on US innovation shocks. In this case, the dependent

variable is an indicator equal to one if, in cell jkt, our algorithm identifies a technology shock, and

zero otherwise. We report the estimates in columns (4–6). In column (5), we confirm that exposure to

the pandemic had virtually no effect on the probability of observing a shock on non-pharmaceutical

innovation. By contrast, column (6) displays that higher exposure to the pandemic results in a higher

probability of observing a shock to US pharmaceutical innovation. Quantitatively, moving from the

25
th

to the 75
th

percentile of excess deaths results in a 2% increase in the probability of a US innovation

shock in pharmaceuticals, which approximately corresponds to 22% of the pre-treatment mean. As in

the previous analysis, this pattern implies that the triple differences estimates indicate the Great In-

fluenza pandemic’s positive and sizable effect on US innovation shocks in pharmaceutical technology

relative to other sectors.

Our data-driven approach to measuring county-technology-level innovation shocks yields rich vari-

ation in US technology shock which, however, may lack historical interpretability. This exercise illus-

trates that, at least in one significant case, one can map these shocks to historically relevant episodes.

We view this correspondence as instructive about the ability of our approach to capture appropriate

variation in innovation activity.

B.V Anecdotal Evidence of Return Innovation

Who were the immigrants that contributed to the diffusion of US technology in Britain? History is

rife with examples of skilled artisans, entrepreneurs, and factory workers who were exposed to some

novel technology where they settled and promoted its diffusion, or in some cases appropriated it, in

the UK.
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In this section, we provide three instructive examples. All three are cases of return migration. His-

torical records typically focus on successful migrants who, upon returning, bring their technology to

their origin areas and promote economic development there. The statistical analysis that we present,

however, suggests that this was only part of the story. In fact, we find that emigrants interacted with

their origin communities even without returning.

B.V.1 British Puddlers and the Kelly-Bessemer Process

An 1856 article published in Scientific American described a new patent granted in the UK to Henry

Bessemer (Wagner, 2008). Bessemer had discovered a new process, the would-be eponymous Besse-

mer process, that, for the first time, allowed the production of inexpensive steel from molten pig iron.
9

American inventor William Kelly complained:

“I have reason to believe my discovery was known in England three or four years ago, as

a number of English puddlers visited this place to see my new process. Several of them

have since returned to England and may have spoken of my invention there.”

(Wagner, 2008, p. 363)

The veracity of Kelly’s allegations remains unverified. They nonetheless indicate three important

elements. First, American inventors knew that British immigrants posed a threat to the secrecy of

their inventions. Second, technology transfer did not necessitate the very upper tail of the human

capital distribution. Skilled workers, such as puddlers, could be the agents of technology diffusion.

Finally, the precise mechanism that emerges is return migration. Kelly expects British puddlers to

speak of “his” invention upon returning to England.

B.V.2 Henry Marsden and the Industrialization of Leeds

Henry Rowland Marsden was born in Leeds to poor parents in 1823 (Curtis, 1875). At age twenty-

five, he emigrated to the United States, first to New York and then to Connecticut. There, he took on

apprenticeships in engineering and metal-working firms. He obtained several engineering patents—

chiefly related to steam engines and pumps, including a “stone-crusher” which is still in use today. In

1862, Marsden returned to Leeds, where he set up a flourishing business centered around his newly

patented inventions. A wealthy man respected for his philanthropic endeavors, he was elected mayor

of Leeds in 1873. He died in 1878 and is credited as one of the most prominent figures in the industrial

development of Leeds.

9
The Bessemer process was one of the most transformative technological developments of the nineteenth century (Rosenberg

and Trajtenberg, 2004).
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B.V.3 Migrants as Agents of Technology Transfer: Wellstood & Smith Ltd.

The case of Stephen Wellstood and John Smith illustrates how international migration spurs technol-

ogy transfers across countries. At age 16, James Smith (1811–1886) left Bonnybridge, Scotland, and

migrated to the US. There, he established himself selling cooking stoves and married. However, as

his wife got ill, Smith returned to Bonnybridge and started re-selling imported stoves from the US.

He soon realized, however, that he could manufacture stoves directly in Britain. He then partnered

with his long-time friend Stephen Wellstood and opened a foundry. They patented the exact same

cooking stove Smith had been selling in the US and started a business that remained active until 1983.
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Tables

Table B.1. Comparison between English Emigrants and Stayers

Non-Migrants Emigrants Return Migrants

Mean Mean Difference Std. Err. Mean Difference Std. Err.

(1) (2) (3) (4) (5) (6) (7)

Panel A. Employment by Sector (Dependent variable = 100 if individual employed in:)

Agriculture 29.349 28.995 -0.100 (0.072) 26.255 -1.369*** (0.244)

Chemicals 0.949 0.916 -0.057*** (0.015) 1.006 -0.035 (0.055)

Construction 15.686 16.014 0.068 (0.059) 17.029 0.444** (0.210)

Engineering 14.501 14.612 0.225*** (0.056) 14.280 0.185 (0.195)

Entrepreneur 0.007 0.003 -0.003*** (0.001) 0.004 -0.001 (0.004)

Liberal Professions 3.928 3.184 -0.792*** (0.029) 4.516 0.247** (0.118)

Metallurgy 3.110 3.704 0.514*** (0.030) 3.247 -0.068 (0.097)

Public Administration 3.497 3.437 -0.124*** (0.029) 4.007 0.220** (0.110)

Textiles 9.488 10.002 0.658*** (0.049) 8.135 -0.226 (0.154)

Trade 7.909 7.852 -0.068 (0.045) 8.534 -0.038 (0.158)

Transports 10.771 10.475 -0.317*** (0.048) 11.759 0.482*** (0.180)

Utilities 0.805 0.807 -0.003 (0.014) 1.226 0.159*** (0.061)

Panel B. Region of Origin (Dependent variable = 100 if individual resides in:)

East 10.494 8.436 -2.061*** (0.033) 10.017 -0.328** (0.149)

East Midlands 6.384 5.883 -0.519*** (0.028) 6.212 -0.062 (0.119)

Greater London 13.639 12.059 -1.712*** (0.040) 15.358 1.733*** (0.182)

North East 6.580 7.107 0.562*** (0.031) 6.436 -0.210* (0.121)

North West 17.431 19.598 2.521*** (0.047) 17.287 -0.407** (0.184)

South East 12.408 10.443 -1.918*** (0.037) 12.899 -0.139 (0.167)

South West 6.444 7.377 0.923*** (0.033) 6.521 0.932*** (0.126)

Wales 6.450 8.365 1.918*** (0.030) 6.379 -1.204*** (0.115)

West Midlands 11.189 11.396 0.182*** (0.038) 10.413 -0.565*** (0.149)

Yorkshire 8.596 8.900 0.057 (0.035) 7.874 0.098 (0.133)

Notes. This Table displays the selection of emigrants and returning migrants to and from the United States

relative to the rest of the British population. The unit of observation is an individual. In each row, the dependent

variable is equal to 100 if the individual belongs to the given category (e.g., if they are employed in agriculture)

and zero otherwise. In columns (1), (2), and (5) we report the averages for non-migrants, migrants, and return

migrants. In columns (3) and (6), we display the difference between non-migrants and, respectively, migrants

and return migrants. The associated robust standard errors are displayed in parentheses in columns (4) and

(7). Referenced on page(s) B29.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table B.2. Long-Run Correlation between Exposure to US Technology and Innovation in the

UK

(log) Number of Patents by Technology Class

1940s 1950s 1960s 1970s 1980s 1990s 2000s

(1) (2) (3) (4) (5) (6) (7)

Agriculture 0.078*** 0.044*** 0.029*** 0.029*** 0.017* 0.016** 0.020***

(0.012) (0.009) (0.010) (0.010) (0.009) (0.008) (0.007)

Building 0.186*** 0.158*** 0.129*** 0.112*** 0.055*** 0.025** 0.013

(0.017) (0.022) (0.016) (0.017) (0.011) (0.012) (0.010)

Chemistry 0.040*** 0.037*** 0.033*** 0.019*** 0.014*** 0.007*** 0.006***

(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

Electricity 0.046*** 0.045*** 0.036*** 0.032*** 0.022*** 0.007 0.005

(0.007) (0.008) (0.007) (0.007) (0.005) (0.005) (0.004)

Engineering 0.112*** 0.101*** 0.110*** 0.092*** 0.062*** 0.018 0.031***

(0.020) (0.016) (0.020) (0.019) (0.016) (0.011) (0.008)

Engines, Pumps 0.053*** 0.048*** 0.050*** 0.043*** 0.023*** 0.014*** 0.002

(0.004) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

Food 0.098*** 0.098*** 0.098*** 0.082*** 0.057*** 0.058*** 0.046***

(0.012) (0.011) (0.012) (0.010) (0.011) (0.005) (0.005)

Health, Amusement 0.040*** 0.037*** 0.036*** 0.029*** 0.016*** 0.006*** 0.001

(0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Instruments 0.109*** 0.089*** 0.106*** 0.090*** 0.071*** 0.054*** 0.033***

(0.009) (0.011) (0.008) (0.011) (0.008) (0.006) (0.006)

Lighting, Heating 0.259*** 0.191*** 0.253*** 0.180*** 0.157*** 0.060*** 0.020

(0.037) (0.040) (0.031) (0.029) (0.038) (0.021) (0.013)

Metallurgy 0.107*** 0.105*** 0.093*** 0.087*** 0.059*** 0.030*** 0.021***

(0.008) (0.007) (0.009) (0.007) (0.007) (0.006) (0.005)

Mining 0.047*** 0.039*** 0.039*** 0.030*** 0.019*** 0.016*** 0.006*

(0.005) (0.005) (0.004) (0.004) (0.003) (0.003) (0.003)

Personal Articles, Furniture 0.108*** 0.124*** 0.112*** 0.112*** 0.132*** 0.011 -0.020

(0.029) (0.028) (0.027) (0.028) (0.035) (0.019) (0.018)

Printing 0.063*** 0.054*** 0.050*** 0.036*** 0.020*** 0.001 0.004

(0.007) (0.006) (0.005) (0.006) (0.006) (0.005) (0.004)

Separating, Mixing 0.064*** 0.061*** 0.061*** 0.048*** 0.031*** 0.010*** 0.002

(0.006) (0.005) (0.005) (0.006) (0.004) (0.004) (0.004)

Shaping 0.072*** 0.060*** 0.061*** 0.040*** 0.028*** 0.018*** 0.012***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004)

Textiles 0.344*** 0.125*** 0.121*** 0.103*** 0.142*** 0.084*** 0.052**

(0.079) (0.028) (0.033) (0.024) (0.031) (0.027) (0.023)

Transporting 0.047*** 0.045*** 0.041*** 0.032*** 0.019*** 0.005 0.000

(0.005) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Weapons, Blasting 0.061*** 0.046*** 0.041*** 0.033*** 0.017*** -0.005* -0.004

(0.004) (0.005) (0.004) (0.004) (0.003) (0.003) (0.003)

Notes. This Table reports the long-run association between exposure to US technology and innovation in the

UK. The unit of observation is a district-technology pair observed at a decade frequency between 1940 and

2010. The dependent variable is the (log) number of patents. The independent variable is an interaction term

between exposure to US technology over the 1930s, decade dummies, and technology dummies. The 2010

decade dummy serves as the baseline category. The regression includes district-by-time, district-by-technology,

and technology-by-time fixed effects. Standard errors are shown in parentheses and are clustered two-way by

district and technology. Referenced on page(s) B30.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table B.3. Assortative Matching of British Immigrants in the United States

Number of Emigrants

All Pairs Positive Migration Ties

(1) (2) (3) (4) (5) (6)

Dependent Variable Mean 0.036 0.036 0.036 0.422 0.422 0.422

Innovation Similarity 2.875 -7.383
∗∗∗

-4.558
∗

-77.969
∗∗

-149.167
∗∗∗

14.269

(1.848) (2.831) (2.664) (35.306) (46.664) (51.243)

County-District FE Yes Yes Yes Yes Yes Yes

Decade FE Yes – – Yes – –

County-Decade FE No Yes Yes No Yes Yes

District-Decade FE No No Yes No No Yes

Number of Counties 1,799,936 1,799,936 1,799,936 255,523 254,968 254,968

Observations 10,799,616 10,799,616 10,799,616 869,632 868,418 868,418

Notes. This Table tests the hypothesis that British immigrants settled in US counties that innovated in the same

fields of their district of origin. The unit of observation is a district-county pair. Units are observed at a decade

frequency between 1870 and 1930. The dependent variable is the number of migrants between the (UK) district

and the (US) county. The independent variable is the similarity of the patent portfolios between the district and

the county. The details of the similarity metric are explained in the main text. In columns (1–3), we include all

district-county dyads; in columns (4–6), we include only the pairs with positive migration ties. All regressions

include county-by-district and decade fixed effects; in columns (2) and (4), we include county-by-time fixed

effects; columns (3) and (6) further include district-by-time fixed effects. Standard errors are clustered two-way

by district and county and are displayed in parentheses. Referenced on page(s) 16, B31.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table B.4. Case Study of US Innovation Shock: The Great Influenza Pandemic

N. of Patents I(Technology Shock)

(1) (2) (3) (4) (5) (6)

All

Patents

Non

Pharma

Pharma

All

Patents

Non

Pharma

Pharma

Dependent Variable Mean 0.274 0.281 0.215 0.090 0.091 0.080

Excess Deaths × Post 1918 × Pharma 0.109
∗∗∗

0.086
∗∗∗

(0.030) (0.024)

Excess Deaths × Post 1918 0.018 0.127
∗∗∗

0.001 0.087
∗∗∗

(0.018) (0.034) (0.007) (0.023)

County-Year FE Yes – – Yes – –

County-Technology FE Yes Yes Yes Yes Yes Yes

Technology-Year FE Yes Yes Yes Yes Yes Yes

Number of Counties 1,170 1,170 1,170 1,170 1,170 1,170

Observations 422,370 377,910 44,460 422,370 377,910 44,460

Notes. This Table illustrates the effect of the Great Influenza Pandemic (1917–1918) impacted patents (columns

1–3) and innovation shocks (columns 4–6). The unit of observation is a county-technology pair observed at

a yearly frequency between 1910 and 1930. In columns (1–3), the dependent variable is the (log) number of

patents; in columns (4–6), it is a binary variable equal to one if in the given county (or county-technology pair)

experiences an innovation shock. In columns (2–3) and (5–6), the independent variable is an interaction term

between excess mortality in 1919–1918 relative to 1915–1917 and a post-Flu indicator equal to one after the In-

fluenza pandemic (i.e., after 1917). In columns (1) and (4), the baseline treatment is further interacted with an

indicator equal to one for the pharmaceutical—i.e., “health, amusement” and “chemistry”—technology classes.

Regressions in columns (1) and (4) include county-by-year, technology-by-year, and county-by-technology

fixed effects; regressions in columns (2–3) and (5–6) include county-by-technology and technology-by-year

fixed effects. Standard errors are shown in parentheses and are clustered at the county level. Referenced on

page(s) B33.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Figures

Figure B.1. Long-Run Correlation between Exposure to US Innovation Activity and Innova-

tion in the United Kingdom: Pooled Regression
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Notes. This Figure reports the long-run association between exposure to US technology and innovation in the

UK. The unit of observation is a district-technology pair observed at a decade frequency between 1940 and 2010.

The dependent variable is the (log) number of patents. The independent variable is an interaction term between

exposure to US technology over the 1930s and decade dummies. The 2010 decade dummy serves as the baseline

category. Each dot reports the coefficient of an interaction term by decade. The regression includes district-by-

time, district-by-technology, and technology-by-time fixed effects. Standard errors are clustered two-way by

district and technology. Bands report 95% confidence intervals. Referenced on page(s) 20, B30.
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Figure B.2. Heterogeneous Effects of Within-Neighborhood Emigration on Innovation by

Occupation of the Stayers
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Notes. This Figure reports how emigrants to the United States impact the innovation activity fulfilled by their

neighbors who remain in the UK. The unit of observation is an individual inventor observed at a yearly fre-

quency between 1880 and 1900. The analysis sample is the universe of inventors linked to the 1891 population

census, as detailed in the main text. The dependent variable is the (log) number of patents produced by the

members of the family. Each coefficient refers to an interaction term between the baseline treatment—an indi-

cator equal to one after the first neighbor of the inventor moves to the US, and zero otherwise—and a dummy

variable that codes the occupation of the inventor. The dashed red line indicates the average treatment effect

reported in the main text. All regressions include inventor and year-fixed effects. Standard errors are clustered

at the county level. The bands report 95% confidence intervals. Referenced on page(s) 30.
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C ROBUSTNESS ANALYSES

In this section, we describe in detail the exercises we perform to assess the robustness of the results

presented in the paper on the OLS analysis (Section C.I), the double and triple differences regressions

(Section C.II), and the neighborhood analysis (Section C.III).

C.I Panel Analysis

C.I.1 Alternative Dependent Variables

In the principal analysis, we use the (log 1+) number of patents at varying levels of aggregation as the

dependent variable. Following Chen and Roth (2024), who note that this transformation makes the

estimates of the average treatment effect scale-dependent, in Table C.1 (columns 1–5), we show that

the results are robust using a battery of alternative transformations.

In the baseline analysis, we measure the originality of British patents and their similarity to US patents

using a five-year window, following Kelly et al. (2021), as detailed in Appendix A.II. In columns (6–8)

and (9–11), however, we show that the results remain robust when adopting different time windows

to compute these text-based measures.

In addition, in Table C.2, we restrict the dependent variable to comprise only patents with at least one

firm assignee. This restriction generates a series of patenting that can potentially reflect technology

adoption and diffusion within firms rather than the activity of independent inventors. We confirm

that the baseline results are confirmed using this stricter definition of patenting.

C.I.2 Alternative Definitions of Knowledge Exposure

In Table C.3, we employ four alternative measures of knowledge exposure. First, we take the log of

the baseline. Second, we construct a measure that fixes bilateral emigrant flows:

Knowledge Exposure
2
ik,t = ∑

j

(
Patentsjk,t

Patentsj,t
× Emigrantsi→j,1880

)
, (C.1)

which, compared to the main measure, restricts assortative matching to the first decade of the analysis.

Third, we define the mirror measure that holds fixed specialization patterns across counties:

Knowledge Exposure
3
ik,t = ∑

j

(
Patentsjk,1880

Patentsj,1880
× Emigrantsi→j,t

)
. (C.2)

C42



Compared to the main measure, this ensures that knowledge exposure does not conflate variation in

patenting activity across counties determined or influenced by English immigrants. Finally, we define

an alternative measure that leverages the stock, instead of the flow of patents issued:

Knowledge Exposure
4
ik,t = ∑

j

[
∑
τ≤t

(
Patentsjk,τ

Patentsj,τ

)
× Emigrantsi→j,t

]
. (C.3)

The idea behind (C.3) is that specialization can be defined in terms of the cumulative number of

patents filed before the given period. Finally, we construct the baseline measure but using the level

of patents instead of the share:

Knowledge Exposure
5
ik,t = ∑

j

(
Patentsjk,t × Emigrantsi→j,t

)
. (C.4)

This last metric accounts for the fact that, in small counties with little patenting activity, the share

of patents would misrepresent the actual composition of innovation relative to large counties with

diversified innovation portfolios. In practice, however, the measure in (C.4) is not vastly different

from the baseline metric because few immigrants settled in those small counties to begin with. In

Table C.3, we show that all these measures yield quantitatively similar results.

Additionally, in Table C.4, we construct variations of the baseline knowledge exposure measure,

which include only patents in the top ℓ% of the impact distribution. Specifically, the generic k-

Knowledge Exposure variable is defined as

Knowledge Exposure
6
ik,t(ℓ) = ∑

j

(
Patents in Top ℓ% Impactjk,t

Patentsj,t
× Emigrantsi→j,t

)
. (C.5)

We consider three ℓ thresholds: the top 20%, 10%, and 5%. The association between innovation and

knowledge exposure is larger for more restrictive ℓ-Knowledge Exposure metrics. This pattern is

consistent with the plausible hypothesis that migrants’ incentive to transmit knowledge to the UK

was larger for patents with a higher economic return.

C.I.3 Alternative Standard Errors

In Figure C.1, we estimate the baseline regressions using several estimators for the standard errors. In

particular, we employ the estimator developed by Conley (1999) to account for the potential spatial

autocorrelation in both emigration rates and exposure to US innovation across technology classes.

All the results remain statistically significant at standard confidence levels using these alternative

estimators.
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C.I.4 Alternative Cut to Linked Sample

In the baseline analysis, we retain all sufficiently high-quality migrant matches. Some British immi-

grants recorded in the US census are paired with multiple UK census records, as detailed in Section

A.III. In such cases, we follow the standard practice in the literature and weigh each such match by

the inverse of the number of matches to avoid multiple counting.

In Table C.8, we take an alternative route and compute the number of US emigrants (columns 1–

4) and knowledge exposure (columns 5–8) using single matches. This approach ensures we do not

need to apply the inverse matching weights. An advantage of only considering single matches is that

one may be worried that the probability of obtaining multiple matches correlates with unobserved

individual characteristics. In practice, however, the estimates remain qualitatively and quantitatively

unchanged relative to the baseline.

C.I.5 Alternative Sample of US Counties

A possible concern for the baseline analysis is that our results are driven by British immigrants di-

rectly impacting innovation in the counties where they settle, thus generating a spurious association

between innovation in those countries and in their areas of origin. To address this concern, we lever-

age a sample of US inventors linked to the census produced by Sarada, Andrews and Ziebarth (2019).

We construct the share of British-born inventors for each US county based on patents filed between

1870 and 1879 and divide this variable into deciles.
10

We use these deciles to construct two addi-

tional measures of US emigration and knowledge exposure, which exclude the migrants who settled

in counties in the top 10% and 20% share of British-born inventors.

Table C.6 replicates the baseline analysis using these two modified treatments—displayed in Panels

A and B. We find that the baseline results remain largely unchanged even when we exclude counties

in the top 10% or top 20% share of British-born inventors to compute the number of US emigrants

(Panel A) and the exposure to US innovation (Panel B).

C.I.6 Exclusion of Inventors Possibly Appearing on UK and US Patent Records

Our results may be driven by inventors applying for the same patent in the US and the UK. It is

worth noticing that this phenomenon would impact our estimates only if there were a correlation

between county-district migration and the inventors’ location. Second, this behavior may still signify

technology transfer operated by the inventors and, thus, contribute to return innovation.

To quantify its relevance, we compile the number of British patents—as well as their average simi-

10
The deciles are constructed over the set of counties with a non-zero share of British-born inventors.
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larity and the number of high-impact patents—excluding those filed by inventors who also appear

in some US patents over a ten-year window around the patent issue year. In practice, this approach

is very conservative because we do not know whether the inventor that appears in the British patent

is effectively the same person that appears in the UK patent, so, in practice, this count excludes all

patents produced by at least one inventor whose name also appears in US patents.

Table C.7 reports the results. We find that all the baseline results are confirmed using this approach,

suggesting that it is unlikely that our results are driven by inventors “double filing” patents in the US

and the UK.

C.II Double and Triple Differences Analysis

C.II.1 Alternative Dependent Variables

As in the previous analysis, the baseline results use the (log 1+) as the main dependent variable.

In columns (1–4) of Table C.9, we adopt different transformations of the dependent variables and

confirm that our results hold throughout. In the baseline analysis, we also adopt a five-year window

to compute the text-based measures (originality and similarity). In columns (5–7) and (8–10), we show

that the qualitative nature of the results remains unchanged when using different thresholds.

C.II.2 Alternative Definitions of the Shocks

In the baseline analysis, we consider a district in the UK to be exposed to an innovation shock in

the United States if the number of emigrants from that district that are exposed to an innovation

shock is in the top 5% of the overall distribution of exposed emigrants, net of district, year, and, when

applicable, technology class fixed effects. In Table C.10, we show that results remain qualitatively

unchanged when using the top 1% and 10% as alternative thresholds. Unsurprisingly, the magnitude

of the estimates of the average treatment effect increases in the restrictiveness of the threshold. As

we move from the top 10% to the top 1% we require that increasingly more emigrants are exposed

to a shock in the United States. According to the logic explained in the main text, this shift would

translate into a relatively more intense exposure to the shock from the perspective of the district.

C.II.3 Alternative Standard Errors

In Figure C.6, we show that the effect of US innovation shocks on the volume of patents, either pooled

(Panel C.6a) or broken down by technology (Panel C.6b), remains statistically significant when using

alternativeC.6a estimators for the standard errors. In Panel C.6a, we find that the statistical signifi-

cance of the effect of the pooled shocks is diminished when adjusting for spatial autocorrelation. The
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estimates remain, however, significant at the 10% level and, importantly, adjusting for spatial auto-

correlation does not alter the statistical significance of the triple differences estimates shown in Panel

C.6b.

C.II.4 Alternative Estimator

The roll-out of US innovation shocks across districts is staggered, because different districts—or district-

technology class pairs—can be exposed to a shock to US innovation at different times. Goodman-

Bacon (2021) shows that, in this case, the standard two-way fixed-effects (TWFE) may fail to estimate

the average treatment effect if the effect is heterogeneous across units and/or over time. In Figure C.4,

we show that all the results shown in the main text remain unchanged when employing the estimator

developed by Sun and Abraham (2021). In particular, we estimate similar pre- and post-treatment co-

efficients for the volume of patents (Panels C.4a–C.4b) and the similarity between US and UK patents

(Panels C.4c–C.4d). We estimate standard TWFE models because they allow for simpler deviations

from the baseline estimation strategy for the standard errors and the heterogeneity analyses, as pre-

viously discussed.

C.II.5 Innovation Shocks in the United States

The double and triple differences analyses implicitly rely on the fact that our methodology to flag

innovation shocks in US counties can reliably isolate periods of intense patenting activity. We test

this assumption in Table C.14. We consider the universe of US counties (in columns 1–2) and county-

technology pairs (columns 3–4). The dependent variable is the (log) number of patents (in columns

1 and 3) and the (log) number of original patents (in columns 2 and 4), and the treatment returns a

value of one for treated units, i.e. counties or county-technology pairs after the innovation shocks

occur, and zero otherwise. The regressions are saturated with fixed effects. These double and triple

differences regressions do not capture a causal effect but rather indicate the actual intensity of the

shock to US innovation activity.

An innovation shock is associated with a 50% increase in the number of patents (column 1). In the

triple-differences setting, patenting increases by 10% on average after the shock. In Figure C.7, we

repeat the estimation in a flexible setting, which uncovers substantial heterogeneity over time. When

counties undergo an innovation shock, they produce 125% more patents. The effect persists over

time, but the spike is short-lived. Within technologies, a US innovation shock is associated with an

80% shock to innovation activity, which reverts to the pre-shock mean very rapidly. We thus conclude

that our methodology successfully isolates sharp and large shocks to innovation activity in the United

States. The salience of the shock is, in both cases, relatively short-lived, albeit substantial.
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C.II.6 Alternative Cut to Linked Sample

In Table C.13, we show that the baseline double- and triple-difference results are largely confirmed

when excluding all migrants with more than one match in the linked sample. The results are more ro-

bust for the triple differences model (columns 4–6) than for the double differences estimates (columns

1–3). However, it is not surprising that the precision of the estimates decreases since this cut excludes

more than 60% migrants from the linked sample. Importantly, the sign and magnitude of each esti-

mate remain largely unchanged.

C.II.7 Alternative Sample of US Counties

In Table C.11, we show that the baseline double- and triple-difference results remain quantitatively

stable when we exclude all counties in the top 10% and 20% of the share of British-born inventors.

This exercise addresses the concern that the shocks reflect the innovation activity of British migrants

in the United States.

C.II.8 Exclusion of Inventors Possibly Appearing on UK and US Patent Records

The baseline results remain similarly unchanged when we look at British patents issued to inventors

who do not also appear on American patent records, as shown in Table C.12. In this context, our

results could have been driven by inventors in the United States applying for patent protection for

the same invention in the US and the UK if the invention contributed to generating a US innovation

shock. Since the estimated treatment effect remains stable when we exclude British patents obtained

by inventors whose names also appear on US patent records, we conclude that this practice is unlikely

to have a quantitatively sizable influence on our results.

C.III Neighborhood Analysis

We consider two very simple departures from the baseline scenario described in the paper. First,

we exclude Wales from the estimation sample in Table C.15. We apply this sample cut because, as

shown in Table A.2, the number of matches in the sample of inventors linked to the census is larger

for inventors residing in Wales. By excluding them from the estimation sample, we thus ensure that

this imbalance does not drive the results. The estimates presented in the Table suggest that this does

not appear to be the case.

Second, in the paper, we consider an emigrant to be in the neighborhood of an inventor if, before

migrating, he lived within five kilometers of the inventor. In Figure C.8, we consider five alternative

threshold distances: one, two, three, ten, and twenty kilometers. We then estimate the baseline re-

gression for these various thresholds and separately report the estimated average treatment effects.
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The coefficients remain positive for all thresholds, but they are largest in magnitude—and statisti-

cally significant at the 1% level—for three- and five-kilometer neighborhoods. The estimate for the

ten-kilometer definition is similar, albeit noisier. From an economic perspective, it is plausible that as

the intensity of the social connections vanishes with distance, including larger neighborhoods in the

treatment introduces noise which reduces the precision of the estimates. In turn, a very low threshold

discards a large number of emigrants, thus artificially dampening the treatment effect. This notwith-

standing, it is reassuring that the coefficients remain positive throughout.
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Tables

Table C.1. Effect of US Emigration and Knowledge Exposure on Innovation: Alternative

Dependent Variables

Number of Patents k-Originality k-Similarity with US Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Number ln(1 + ·) ln(ε + ·) ln(·) Arcsinh 1 yr. 5 yrs. 10 yrs. 1 yr. 5 yrs. 10 yrs.

Panel A. Patents Pooled Across Technologies

Dependent Variable Mean 161.499 3.512 3.254 3.568 4.105 2.083 2.037 2.021 33.833 162.046 305.021

US Emigrants (1,000s) 403.841
∗∗

0.686
∗∗∗

0.572
∗

0.685
∗∗∗

0.657
∗∗∗

0.712
∗∗∗

0.987
∗∗∗

0.915
∗∗∗

3.783
∗∗

15.014
∗

23.412

(166.325) (0.226) (0.310) (0.236) (0.238) (0.252) (0.262) (0.255) (1.807) (8.577) (15.728)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,720 3,720 3,720 3,575 3,720 3,720 3,720 3,720 3,720 3,720 3,720

Panel B. Patents by District-Technology

Dependent Variable Mean 0.079 1.000 -1.389 1.678 1.236 0.403 0.382 0.376 15.432 73.914 139.440

Knowledge Exposure 0.014
∗∗∗

0.040
∗∗∗

0.027
∗∗∗

0.034
∗∗∗

0.042
∗∗∗

0.035
∗∗∗

0.034
∗∗∗

0.034
∗∗∗

0.137
∗∗∗

0.640
∗∗∗

1.201
∗∗∗

(0.001) (0.001) (0.003) (0.001) (0.002) (0.001) (0.001) (0.001) (0.017) (0.083) (0.156)

District-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technology-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 70,433 70,433 70,433 35,924 70,433 70,433 70,433 70,433 70,433 70,433 70,433

Number of Districts 620 620 620 619 620 620 620 620 620 620 620

Notes. This Table displays the association between UK innovation and US emigration (Panel A) and knowledge

exposure to US technology (Panel B). The unit of observation is a district (Panel A) and a district-technology

class pair (Panel B) observed at a decade frequency between 1870 and 1930. The dependent variables are: in

column (1), the number of patents; in column (2), the log(1+) number of patents; in column (3), the log(0.1+)

number of patents; in column (4), the log number of patents, which excludes zeros; in column (5), the inverse

hyperbolic sine of the number of patents; in columns (6–8), patents in the top 20% of the novelty distribution in

the previous 1, 5, and 10 years; in columns (9–11), the dependent variable is the similarity of British patents with

American patents issued in the previous 1, 5, and 10 years. In Panel A, the independent variable is the number

of US emigrants; in Panel B, the independent variable is the baseline measure of exposure to US technology

through migration ties. All regressions in Panel A include district and year-fixed effects; all regressions in Panel

B include district-by-year and technology-by-year fixed effects. Standard errors in parentheses are clustered at

the district level. Referenced on page(s) 24, 24, A8, C42.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.2. Emigration to the United States and Innovation: Patents with Firm Assignee

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6)

Number

US Patents

Similarity

High

Impact

Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 2.686 107.436 1.426 0.619 36.724 0.216

US Emigrants (1,000s) 0.728
∗∗∗

41.363
∗∗∗

0.765
∗∗∗

(0.189) (10.374) (0.210)

Knowledge Exposure 0.038
∗∗∗

1.225
∗∗∗

0.024
∗∗∗

(0.001) (0.061) (0.001)

District FE Yes Yes Yes – – –

Decade FE Yes Yes Yes – – –

District-Decade FE – – – Yes Yes Yes

Technology FE – – – Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 3,726 3,726 3,726 70,433 70,433 70,433

Notes. This Table displays the association between emigration and innovation in the United Kingdom. In

columns (1–3) (resp. 4–6), the unit of observation is a district (resp. district-technology pair) observed at a

decade frequency between 1870 and 1930. In columns (1) and (4), the dependent variable is the (log) number of

patents; in columns (2) and (5), the dependent variable is the average similarity between UK and US patents;

in columns (3) and (6), we include patents in the top 20% of the novelty distribution. We only include patents

with a firm assignee. In columns (1–3) (resp. 4–6), the independent variable is the number of migrants (resp.

exposure to US technology). In columns (1–3), regressions include district and decade-fixed effects; in columns

(4–6), regressions include district-by-time and technology-fixed effects. Standard errors in parentheses are clus-

tered at the district level. Referenced on page(s) 24, C42.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.3. Correlation between Exposure to US Technology and Innovation: Alternative

Measures of Knowledge Exposure

log(1 + Number of Patents)

(1) (2) (3) (4) (5) (6)

Dependent Variable Mean 0.999 0.999 0.999 0.999 0.999 0.999

Knowledge Exposure 0.373
∗∗∗

(0.012)

Log(1+Knowledge Exposure) 6.944
∗∗∗

(0.275)

Fixed-Emigration Knowledge Exposure 0.655
∗∗∗

(0.034)

Fixed-Innovation Knowledge Exposure 0.297
∗∗∗

(0.012)

Cumulative Knowledge Exposure 0.007

(0.007)

Level of Patents Knowledge Exposure 0.165
∗∗∗

(0.004)

District-Year FE Yes Yes Yes Yes Yes Yes

Technology FE Yes Yes Yes Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 70,794 70,794 70,794 70,794 70,794 70,794

Notes. This Table displays the association between exposure to US technology through migration ties and in-

novation in the United Kingdom. The unit of observation is a district-technology pair observed at a decade

frequency between 1870 and 1930. The dependent variable is the (log) number of patents. The independent

variable is: in column (1), the baseline metric of knowledge exposure (divided by 10 for comparability); in col-

umn (2), the log of the baseline metric; in column (3), the baseline measure but keeping migration ties between

districts and counties fixed in 1880; in column (4), the baseline metric but keeping the share of patents across

classes fixed in 1880; in column (5), the baseline metric but considering patents as a stock instead of a flow and

taking the cumulative number of patents over time; in column (6), the exposure metric interacts migration ties

with the number of patents produced in each technology by the county, instead of the share. All regressions

include district-by-year and technology-fixed effects. Standard errors in parentheses are clustered at the district

level. Referenced on page(s) 25, C42, C43.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.4. Correlation between Exposure to US Technology and Innovation: Exposure to

High-Impact Patents

Patents by District-Technology

(1) (2) (3) (4)

Dependent Variable Mean 1.006 1.006 1.006 1.006

Knowledge Exposure 0.023
∗∗∗

(0.002)

Knowledge Exposure (Top 20% Impact) 0.074
∗∗∗

(0.005)

Knowledge Exposure (Top 10% Impact) 0.112
∗∗∗

(0.007)

Knowledge Exposure (Top 5% Impact) 0.156
∗∗∗

(0.010)

District-Year FE Yes Yes Yes Yes

Technology FE Yes Yes Yes Yes

Number of Districts 621 621 621 621

Observations 70,433 70,433 70,433 70,433

Notes. This Table displays the association between exposure to US technology through migration ties and in-

novation in the United Kingdom. The unit of observation is a district-technology pair observed at a decade

frequency between 1870 and 1930. The dependent variable is the (log) number of patents. The independent

variable in column (1) is the baseline metric of knowledge exposure. In columns (2) to (4), to construct the

knowledge exposure metric, we only include high-impact patents to measure county specialization. In partic-

ular, in column (2), we only include patents in the top 20% of the impact distribution; in column (3), we only

include patents in the top 10%; and in column (4), we only include patents in the top 5% of the distribution. All

regressions include district-by-year and technology-fixed effects. Standard errors in parentheses are clustered

at the district level. Referenced on page(s) 25, C43.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.5. Emigration, Exposure to US Knowledge, and Innovation in the United Kingdom:

Poisson Quasi-Maximum Likelihood Estimates

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6) (7) (8)

Number Number

US Patents

Similarity

High

Impact

Number Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 182.270 182.484 41.365 38.521 10.006 11.816 2.275 2.506

US Emigrants (1,000s) 0.867
∗∗∗

0.385
∗

0.846
∗∗∗

0.917
∗∗∗

(0.212) (0.230) (0.214) (0.282)

Knowledge Exposure 0.437
∗∗∗

0.033 0.423
∗∗∗

0.754
∗∗∗

(0.091) (0.097) (0.094) (0.132)

District FE Yes Yes Yes Yes – – – –

Decade FE Yes – Yes Yes – – – –

Controls × Time No Yes No No – – – –

County-Year FE No Yes No No – – – –

District-Year FE – – – – Yes Yes Yes Yes

Technology FE – – – – Yes – Yes Yes

District-Technology FE – – – – No Yes No No

Technology-Year FE – – – – No Yes No No

Number of Districts 621 620 621 610 621 620 621 610

Observations 3,726 3,720 3,726 3,660 67,754 57,371 67,697 56,164

Notes. This Table displays the association between emigration and innovation in the United Kingdom. In

columns (1–4) (resp. 5–8), the unit of observation is a district (resp. district-technology pair) observed at a

decade frequency between 1870 and 1930. Each regression is estimated using the Poisson quasi-maximum

likelihood estimator described in Correia et al. (2020). The dependent variable is: in columns (1–2) and (5–6),

the number of patents; in (3) and (7), the text-based similarity between British and American patents issued

in the previous five years; in (4) and (8), the number of patents in the top 20% of the novelty distribution. In

columns (1–4) (resp. 5–8), the independent variable is the number of migrants (resp. exposure to US tech-

nology). In columns (1) and (3–4), the model includes district and decade-fixed effects; column (2) includes

district-level controls measured in 1880 and interacted with decade indicators and county-by-decade fixed ef-

fects. In columns (1) and (7–8), regressions include district-by-year and technology-fixed effects; column (6)

also includes district-by-technology and technology-by-year fixed effects. Standard errors in parentheses are

clustered at the district level. Referenced on page(s) 24.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01

C53



Table C.6. Emigration, Exposure to US Knowledge, and Innovation in the United Kingdom:

Excluding US Counties with a High Share of British-born Inventors

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6) (7) (8)

Number Number

US Patents

Similarity

High

Impact

Number Number

US Patents

Similarity

High

Impact

Panel A. Excluding US Counties in top 10% of Share of British-Born Inventors

Dependent Variable Mean 3.520 3.521 163.036 2.043 1.006 1.006 74.488 0.388

US Emigrants (1,000s) 0.743
∗∗∗

0.499
∗∗∗

19.007
∗∗∗

0.882
∗∗∗

(0.137) (0.184) (5.517) (0.168)

Knowledge Exposure 0.023
∗∗∗

0.006
∗∗∗

0.231
∗∗∗

0.022
∗∗∗

(0.002) (0.001) (0.058) (0.001)

Panel B. Excluding US Counties in top 20% of Share of British-Born Inventors

Dependent Variable Mean 3.520 3.521 163.036 2.043 1.006 1.006 74.488 0.388

US Emigrants (1,000s) 0.766
∗∗∗

0.508
∗∗∗

19.562
∗∗∗

0.928
∗∗∗

(0.143) (0.191) (5.641) (0.175)

Knowledge Exposure 0.024
∗∗∗

0.007
∗∗∗

0.256
∗∗∗

0.023
∗∗∗

(0.002) (0.001) (0.061) (0.001)

District FE Yes Yes Yes Yes – – – –

Decade FE Yes – Yes Yes – – – –

Controls × Time No Yes No No – – – –

County-Year FE No Yes No No – – – –

District-Year FE – – – – Yes Yes Yes Yes

Technology FE – – – – Yes – Yes Yes

District-Technology FE – – – – No Yes No No

Technology-Year FE – – – – No Yes No No

Number of Districts 620 619 620 620 621 621 621 621

Observations 3,699 3,691 3,699 3,699 70,433 70,433 70,433 70,433

Notes. This Table displays the association between emigration and innovation in the United Kingdom. To con-

struct emigration and knowledge exposure, we exclude migrants that settle in US counties in the top 10% (Panel

A) and 20% (Panel B) of the distribution of the share of British-born inventors. In columns (1–4) (resp. 5–8),

the unit of observation is a district (resp. district-technology pair) observed at a decade frequency between

1870 and 1930. The dependent variable is: in columns (1–2) and (5–6), the number of patents; in (3) and (7),

the text-based similarity between British and American patents issued in the previous five years; in (4) and

(8), the number of patents in the top 20% of the novelty distribution. In columns (1–4) (resp. 5–8), the inde-

pendent variable is the number of migrants (resp. exposure to US technology). In columns (1) and (3–4), the

model includes district and decade-fixed effects; column (2) includes district-level controls measured in 1880

and interacted with decade indicators and county-by-decade fixed effects. In columns (1) and (7–8), regres-

sions include district-by-year and technology-fixed effects; column (6) also includes district-by-technology and

technology-by-year fixed effects. Standard errors in parentheses are clustered at the district level. Referenced

on page(s) 25, C44.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.7. Emigration, Exposure to US Knowledge, and Innovation in the United Kingdom:

Excluding UK Patents with Inventors Whose Name Appears in US Patents

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6) (7) (8)

Number Number

US Patents

Similarity

High

Impact

Number Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 3.072 3.072 154.386 1.699 1.006 1.006 74.488 0.388

US Emigrants (1,000s) 0.731
∗∗∗

0.345
∗∗

25.852
∗∗∗

0.956
∗∗∗

(0.132) (0.174) (6.106) (0.170)

Knowledge Exposure 0.023
∗∗∗

0.006
∗∗∗

0.231
∗∗∗

0.022
∗∗∗

(0.002) (0.001) (0.058) (0.001)

District FE Yes Yes Yes Yes – – – –

Decade FE Yes – Yes Yes – – – –

Controls × Time No Yes No No – – – –

County-Year FE No Yes No No – – – –

District-Year FE – – – – Yes Yes Yes Yes

Technology FE – – – – Yes – Yes Yes

District-Technology FE – – – – No Yes No No

Technology-Year FE – – – – No Yes No No

Number of Districts 621 620 621 621 621 621 621 621

Observations 3,726 3,720 3,726 3,726 70,433 70,433 70,433 70,433

Notes. This Table displays the association between emigration and innovation in the United Kingdom. To

construct the patent count, we exclude all UK patents with at least one inventor whose name appears in at least

one US patent over a ten-year window around the patent filing date. In columns (1–4) (resp. 5–8), the unit of

observation is a district (resp. district-technology pair) observed at a decade frequency between 1870 and 1930.

The dependent variable is: in columns (1–2) and (5–6), the number of patents; in (3) and (7), the text-based

similarity between British and American patents issued in the previous five years; in (4) and (8), the number of

patents in the top 20% of the novelty distribution. In columns (1–4) (resp. 5–8), the independent variable is the

number of migrants (resp. exposure to US technology). In columns (1) and (3–4), the model includes district and

decade-fixed effects; column (2) includes district-level controls measured in 1880 and interacted with decade

indicators and county-by-decade fixed effects. In columns (1) and (7–8), regressions include district-by-year and

technology-fixed effects; column (6) also includes district-by-technology and technology-by-year fixed effects.

Standard errors in parentheses are clustered at the district level. Referenced on page(s) 24, C45.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.8. Emigration, Exposure to US Knowledge, and Innovation in the United Kingdom:

Census-Linking Algorithm Excludes Multiple Matches

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6) (7) (8)

Number Number

US Patents

Similarity

High

Impact

Number Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 3.518 3.518 162.555 2.042 1.006 1.006 74.527 0.388

US Emigrants (1,000s) 1.485
∗∗∗

0.880
∗∗

46.065
∗∗∗

1.585
∗∗∗

(0.274) (0.371) (11.711) (0.348)

Knowledge Exposure 0.052
∗∗∗

0.011
∗∗∗

0.461
∗∗∗

0.052
∗∗∗

(0.004) (0.002) (0.134) (0.003)

District FE Yes Yes Yes Yes – – – –

Decade FE Yes – Yes Yes – – – –

Controls × Time No Yes No No – – – –

County-Year FE No Yes No No – – – –

District-Year FE – – – – Yes Yes Yes Yes

Technology FE – – – – Yes – Yes Yes

District-Technology FE – – – – No Yes No No

Technology-Year FE – – – – No Yes No No

Number of Districts 621 620 621 621 621 621 621 621

Observations 3,726 3,720 3,726 3,726 70,395 70,395 70,395 70,395

Notes. This Table displays the association between emigration and innovation in the United Kingdom. To

construct the treatment variables, we exclude all migrants with more than one match in the linked sample.

In columns (1–4) (resp. 5–8), the unit of observation is a district (resp. district-technology pair) observed at a

decade frequency between 1870 and 1930. The dependent variable is: in columns (1–2) and (5–6), the number

of patents; in (3) and (7), the text-based similarity between British and American patents issued in the previous

five years; in (4) and (8), the number of patents in the top 20% of the novelty distribution. In columns (1–4)

(resp. 5–8), the independent variable is the number of migrants (resp. exposure to US technology). In columns

(1) and (3–4), the model includes district and decade-fixed effects; column (2) includes district-level controls

measured in 1880 and interacted with decade indicators and county-by-decade fixed effects. In columns (1)

and (7–8), regressions include district-by-year and technology-fixed effects; column (6) also includes district-

by-technology and technology-by-year fixed effects. Standard errors in parentheses are clustered at the district

level. Referenced on page(s) 25, C44.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.9. Double and Triple Differences: Alternative Dependent Variables

Number of Patents k-Originality k-Similarity with US Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Number ln(1 + ·) ln(ε + ·) Arcsinh 1 yr. 5 yrs. 10 yrs. 1 yr. 5 yrs. 10 yrs.

Panel A. Innovation by District

Dependent Variable Mean 1.687 21.355 0.206 2.055 0.759 0.736 0.728 2.549 12.156 23.010

Post × US Innovation Shock 0.091
∗∗

20.777
∗∗∗

0.077 0.066 0.138
∗∗∗

0.082
∗

0.089
∗

0.364
∗∗∗

1.852
∗∗∗

3.569
∗∗∗

(0.045) (5.847) (0.083) (0.049) (0.041) (0.043) (0.047) (0.071) (0.347) (0.672)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 31,671 31,671 31,671 31,671 31,671 31,671 31,671 31,671 31,671 31,671

Panel B. Innovation by District-Technology

Dependent Variable Mean 0.292 1.124 -3.456 0.371 0.297 0.304 0.313 0.629 3.012 5.708

Post × US Innovation Shock 0.064
∗∗∗

0.994
∗∗

0.093
∗∗

0.073
∗∗∗

0.057
∗∗

0.052
∗∗

0.047
∗∗

0.172
∗∗∗

0.876
∗∗∗

1.712
∗∗∗

(0.019) (0.361) (0.042) (0.023) (0.020) (0.020) (0.021) (0.047) (0.234) (0.465)

District-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technology-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 601,749 601,749 601,749 601,749 601,749 601,749 601,749 601,749 601,749 601,749

Notes. This Table displays the effect of shocks to US innovation activity on innovation produced in the United

Kingdom. In Panel A, the unit of observation is a district observed at a yearly frequency between 1870 and 1930;

in Panel B, the unit of observation is a district-technology pair observed over the same period. The dependent

variables are: in column (1), the number of patents; in column (2), the log(1+) number of patents; in column (3),

the log(0.1+) number of patents; in column (4), the inverse hyperbolic sine of the number of patents; in columns

(5–7), the number of patents in the top 20% of distribution of originality in the previous 1, 5, and 10 years; in

columns (8–10), the dependent variable is the similarity of British patents with American patents issued in the

previous 1, 5, and 10 years. The independent variable is equal to one for all years after the observation unit

is exposed to a shock to US innovation activity. The definition of exposure is provided in the main text. All

regressions in Panel A include district and year fixed effects; all regressions in Panel B include district-by-year,

technology-by-year, and district-by-technology fixed effects. Standard errors are clustered by district and are

displayed in parentheses. Referenced on page(s) 24, 24, A8, C45.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.10. Double and Triple Differences: Alternative Definitions of the Shocks

Number of Patents High-Impact Patents Similarity with US Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Innovation by District

Dependent Variable Mean 1.687 1.687 1.687 1.738 1.738 1.738 12.156 12.156 12.156

Post × US Innovation Shock (Top 10%) 0.081
∗

0.060 1.587
∗∗∗

(0.043) (0.043) (0.341)

Post × US Innovation Shock (Top 5%) 0.091
∗∗

0.074
∗

1.852
∗∗∗

(0.045) (0.045) (0.347)

Post × US Innovation Shock (Top 1%) 0.111
∗

0.070 2.869
∗∗∗

(0.063) (0.063) (0.307)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 31,671 31,671 31,671 31,671 31,671 31,671 31,671 31,671 31,671

Panel B. Innovation by District-Technology

Dependent Variable Mean 0.292 0.292 0.292 0.304 0.304 0.304 0.302 0.302 0.302

Post × US Innovation Shock (Top 10%) 0.035
∗∗∗

0.027
∗∗

0.040
∗∗

(0.011) (0.011) (0.014)

Post × US Innovation Shock (Top 5%) 0.062
∗∗∗

0.050
∗∗

0.087
∗∗∗

(0.019) (0.020) (0.023)

Post × US Innovation Shock (Top 1%) 0.093
∗∗∗

0.078
∗∗

0.144
∗∗∗

(0.028) (0.030) (0.037)

District-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technology-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 612,408 612,408 612,408 612,408 612,408 612,408 612,408 612,408 612,408

Notes. This Table displays the effect of shocks to US innovation activity on innovation produced in the United

Kingdom. In Panel A, the unit of observation is a district observed at a yearly frequency between 1870 and 1930;

in Panel B, the unit of observation is a district-technology pair observed over the same period. The dependent

variable is in columns (1–3), the (log) number of patents; in columns (4–6), the number of patents in the top

20% of the originality distribution; in columns (7–9), the average text-based similarity between British patents

and American patents produced in the previous five years. The independent variable is equal to one for all

years after the observation unit is exposed to a shock to US innovation activity. A unit is exposed to a shock

if the number of emigrants from that unit that are exposed to a US innovation shock is in the k-percentile of

the distribution. We consider three alternative values for the k threshold, 10%, 5% (the baseline), and 1%. All

regressions in Panel A include district and year fixed effects; all regressions in Panel B include district-by-year,

technology-by-year, and district-by-technology fixed effects. Standard errors are clustered by district and are

displayed in parentheses. Referenced on page(s) 25, C45.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.11. Double and Triple Differences: Excluding US Counties with a High Share of

British-born Inventors

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6)

Number

US Patents

Similarity

High

Impact

Number

US Patents

Similarity

High

Impact

Panel A. Excluding US Counties in top 10% of Share of British-Born Inventors

Dependent Variable Mean 1.687 121.561 0.736 0.292 30.124 0.082

Post × US Innovation Shock 0.091
∗∗

18.523
∗∗∗

0.082
∗

0.064
∗∗∗

8.760
∗∗∗

0.020
∗∗∗

(0.045) (3.473) (0.043) (0.009) (1.145) (0.006)

Panel B. Excluding US Counties in top 20% of Share of British-Born Inventors

Dependent Variable Mean 1.687 121.561 0.736 0.292 30.124 0.082

Post × US Innovation Shock 0.070 16.619
∗∗∗

0.079
∗

0.068
∗∗∗

9.457
∗∗∗

0.022
∗∗∗

(0.045) (3.578) (0.044) (0.009) (1.139) (0.006)

District FE Yes Yes Yes – – –

Year FE Yes Yes Yes – – –

District-Year FE – – – Yes Yes Yes

Technology-Year FE – – – Yes Yes Yes

District-Technology FE – – – Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 31,671 31,671 31,671 601,749 601,749 601,749

Notes. This Table reports the effect of shocks to US innovation activity on innovation in the United Kingdom.

To construct emigration and knowledge exposure, we exclude migrants that settle in US counties in the top

10% (Panel A) and 20% (Panel B) of the distribution of the share of British-born inventors. In columns (1–3),

the unit of observation is a district observed at a yearly frequency between 1870 and 1930. In columns (4–6),

the unit of observation is a district-technology pair observed over the same period. In columns (1) and (4),

the dependent variable is the log(1+) number of patents. In columns (2) and (5), the dependent variable is the

average text-based similarity between UK patents and US patents issued in the previous five years. In columns

(3) and (6), the dependent variable is the log(1+) number of patents in the top 20% of the impact distribution

(“Breakthrough” patents). “Post” is an indicator equal to one for all years after the observation unit is exposed

to a shock to US innovation activity, equal to zero otherwise. “US Innovation Shock” is defined in Section IV.D.

Columns (1–3) include district and year fixed effects. Columns (4–6) include district-by-year, technology-by-

year, and district-by-technology fixed effects. Standard errors, reported in parentheses, are clustered by district.

Referenced on page(s) 25, C47.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.12. Double and Triple Differences: Excluding UK Patents with Inventors Whose

Name Appears in US Patents

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6)

Number

US Patents

Similarity

High

Impact

Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 1.380 105.767 0.569 0.292 30.124 0.082

Post × US Innovation Shock 0.135
∗∗∗

20.336
∗∗∗

0.120
∗∗∗

0.064
∗∗∗

8.760
∗∗∗

0.020
∗∗∗

(0.047) (4.015) (0.043) (0.009) (1.145) (0.006)

District FE Yes Yes Yes – – –

Year FE Yes Yes Yes – – –

District-Year FE – – – Yes Yes Yes

Technology-Year FE – – – Yes Yes Yes

District-Technology FE – – – Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 31,671 31,671 31,671 601,749 601,749 601,749

Notes. This Table reports the effect of shocks to US innovation activity on innovation in the United Kingdom. To

construct the patent count, we exclude all UK patents with at least one inventor whose name appears in at least

one US patent over a ten-year window around the patent filing date. In columns (1–3), the unit of observation

is a district observed at a yearly frequency between 1870 and 1930. In columns (4–6), the unit of observation

is a district-technology pair observed over the same period. In columns (1) and (4), the dependent variable

is the log(1+) number of patents. In columns (2) and (5), the dependent variable is the average text-based

similarity between UK patents and US patents issued in the previous five years. In columns (3) and (6), the

dependent variable is the log(1+) number of patents in the top 20% of the impact distribution (“Breakthrough”

patents). “Post” is an indicator equal to one for all years after the observation unit is exposed to a shock to US

innovation activity, equal to zero otherwise. “US Innovation Shock” is defined in Section IV.D. Columns (1–3)

include district and year fixed effects. Columns (4–6) include district-by-year, technology-by-year, and district-

by-technology fixed effects. Standard errors, reported in parentheses, are clustered by district. Referenced on

page(s) 24, C47.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.13. Double and Triple Differences: Census-Linking Algorithm Excludes Multiple

Matches

Patents by District Patents by District-Technology

(1) (2) (3) (4) (5) (6)

Number

US Patents

Similarity

High

Impact

Number

US Patents

Similarity

High

Impact

Dependent Variable Mean 1.687 121.561 0.736 0.292 30.124 0.082

Post × US Innovation Shock 0.037 7.301
∗∗

0.068
∗

0.051
∗∗∗

6.691
∗∗∗

0.021
∗∗∗

(0.041) (3.183) (0.038) (0.007) (0.883) (0.005)

District FE Yes Yes Yes – – –

Year FE Yes Yes Yes – – –

District-Year FE – – – Yes Yes Yes

Technology-Year FE – – – Yes Yes Yes

District-Technology FE – – – Yes Yes Yes

Number of Districts 621 621 621 621 621 621

Observations 31,671 31,671 31,671 601,749 601,749 601,749

Notes. This Table reports the effect of shocks to US innovation activity on innovation in the United Kingdom.

To construct the treatment variables, we exclude all migrants with more than one match in the linked sample.

In columns (1–3), the unit of observation is a district observed at a yearly frequency between 1870 and 1930. In

columns (4–6), the unit of observation is a district-technology pair observed over the same period. In columns

(1) and (4), the dependent variable is the log(1+) number of patents. In columns (2) and (5), the dependent vari-

able is the average text-based similarity between UK patents and US patents issued in the previous five years.

In columns (3) and (6), the dependent variable is the log(1+) number of patents in the top 20% of the impact

distribution (“Breakthrough” patents). “Post” is an indicator equal to one for all years after the observation

unit is exposed to a shock to US innovation activity, equal to zero otherwise. “US Innovation Shock” is defined

in Section IV.D. Columns (1–3) include district and year fixed effects. Columns (4–6) include district-by-year,

technology-by-year, and district-by-technology fixed effects. Standard errors, reported in parentheses, are clus-

tered by district. Referenced on page(s) 25, C46.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.14. Shocks to United States Innovation Activity

Patents by

County

Patents by

County-Technology

(1) (2) (3) (4)

Number

High

Impact

Number

High

Impact

Dependent Variable Mean 0.954 0.165 0.135 0.016

Post × Innovation Shock 0.585
∗∗∗

0.057
∗∗∗

0.129
∗∗∗

0.030
∗∗∗

(0.018) (0.009) (0.010) (0.003)

County FE Yes Yes – –

Year FE Yes Yes – –

County-Year FE – – Yes Yes

Technology-Year FE – – Yes Yes

County-Technology FE – – Yes Yes

Number of Counties 2,848 2,848 2,848 2,848

Observations 202,208 196,953 3,841,952 3,832,217

Notes. This Table reports the “first stage” of the shocks to US innovation, i.e., how much innovation in the US

increases in the period following what we define as a shock. In columns (1–2) (resp. 3–4), the unit of observation

is a county (resp. county-technology pair) observed at a yearly frequency between 1870 and 1930. In columns

(1) and (3), the dependent variable is the (log) number of patents; in columns (2) and (4), it is the (log) number

of patents in the top 20% of the novelty distribution. The independent variable is an indicator equal to one

in the years after the observation units undergo an innovation shock. Regressions in columns (1–2) include

county and year-fixed effects; regressions in columns (3–4) include county-by-year, technology-by-year, and

county-by-technology fixed effects. Standard errors are shown in parentheses and are clustered at the county

level. Referenced on page(s) 17, 17, 21, C46.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Table C.15. Within Neighborhood US Emigration and Innovation in the United Kingdom:

Excluding Wales

Number of Patents Text-Based Measures

(1) (2) (3) (4) (5) (6) (7)

I(Patents > 0)

US Patents

Similarity

High

Impact

Panel A. Neighborhood Emigration

Dependent Variable Mean 6.818 6.818 6.839 6.855 8.579 6.891 1.585

Post × Emigrant in Neighborhood 0.428
∗∗∗

0.220
∗∗

0.238
∗∗

0.176 0.540
∗∗∗

0.473
∗∗∗

0.111
∗∗

(0.133) (0.112) (0.118) (0.157) (0.164) (0.135) (0.054)

Post × N. Emigrants in Neighborhood 0.261

(0.214)

Panel B. Neighborhood Non-Return Emigration

Dependent Variable Mean 6.818 6.818 6.839 6.855 8.579 6.891 1.585

Post × Non-Return Emigrant in Neighborhood 0.394
∗∗∗

0.236
∗∗

0.248
∗∗

0.409
∗∗

0.502
∗∗∗

0.448
∗∗∗

0.101
∗

(0.133) (0.116) (0.123) (0.166) (0.163) (0.136) (0.055)

Post × N. Non-Return Emigrants in Neighborhood 0.108

(0.222)

Individual FE Yes Yes Yes Yes Yes Yes Yes

Parish-Year FE No No Yes No No No No

District-Year FE No Yes – No No No No

Year FE Yes – – Yes Yes Yes Yes

Number of Individuals 124,329 124,321 122,528 108,319 124,329 124,329 124,329

Observations 2,486,580 2,486,420 2,450,560 2,166,380 2,486,580 2,486,580 2,486,580

Notes. This Table reports how emigrants to the United States impact the innovation activity fulfilled by their

neighbors who remain in the UK. The unit of observation is an individual inventor observed at a yearly fre-

quency between 1880 and 1900. The analysis sample is the universe of inventors linked to the 1891 population

census, as detailed in the main text, excluding inventors residing in Wales. The dependent variable is in columns

(1–4), the (log) number of patents produced by the members of the family; in column (5), an indicator equal to

one for the same variable; in column (6), the average text-based similarity between British patents and Amer-

ican patents produced in the previous five years; in column (7), the number of patents in the top 20% of the

novelty distribution. In Panel A, the baseline treatment is an indicator equal to one after the first neighbor of

the inventor moves to the US, and zero otherwise; in Panel B, we restrict the treatment to non-return emigrants.

In column (4), we further include an interaction with the number of emigrants. All regressions include inven-

tor and year fixed effects; in columns (2) and (3) we include, respectively, district-by-year and parish-by-year

fixed effects. Standard errors are clustered at the county level and are displayed in parentheses. Referenced on

page(s) 29, C47.

∗
: p < 0.10,

∗∗
: p < 0.05,

∗∗∗
: p < 0.01
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Figures

Figure C.1. Emigration, Exposure to US Knowledge, and Innovation: Alternative Standard

Errors

(a) Patents Pooled Across Technologies
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Notes. This Figure displays the association between emigration and innovation in the United Kingdom using

various estimators for the standard errors. In Panel C.1a(resp. C.1b), the unit of observation is a district (resp.

district-technology pair) observed at a decade frequency between 1870 and 1930. Each dot reports the coeffi-

cient of a regression between the (log) number of patents and an independent variable which, in Panel C.1a

(resp. C.1b) is the number of migrants (resp. exposure to US technology). In Panel C.1a (resp. C.1b), regres-

sions include district and decade-fixed effects (resp. district-by-technology and year-fixed effects). We consider

various estimators for the standard errors: robust to heteroskedasticity; clustered by district, technology, and

two-way by district and technology; robust to heteroskedasticity and autocorrelation at various bandwidths;

and robust to spatial autocorrelation following (Conley, 1999) at various bandwidths. All confidence bands

report 95% confidence intervals. Referenced on page(s) 26, C43.
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Figure C.2. Distribution of Exposure to US Technology Shocks

(a) Patents Pooled Across Technologies
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(b) Patents by Technology
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Notes. This Figure reports the distribution of exposure to US technology shocks. The formal definition of

exposure to a US technology shock—the number of migrants from each district between 1870 and 1880 that

settle in counties with at least one innovation shock—is provided in Section IV.D. The gray bars report the

distribution of the exposure metric. The blue line reports the cumulative distribution (shown on the right y-

axis). The dashed black line marks the 95
th

percentile of the distribution, which is the threshold used in the

main analysis to compile the double- and triple-differences shocks. Referenced on page(s) 17.
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Figure C.3. Raw Mean Patenting in Districts Exposed to US Innovation Shocks

(a) Patents Pooled Across Technologies
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Notes. This Figure reports the average number of patents in UK districts before and after they are exposed to a

US innovation shock. In Panel IIIa, the unit of observation is a district observed at yearly frequency between

1870 and 1930; in Panel IIIb, the unit of observation is a district-technology pair observed over the same period.

The dependent variable is the log(1+) number of patents. Each dot reports the average number of patents

produced in districts that, at some point, are exposed to an innovation shock, by relative time since the treatment

period. The black dashed line indicates the treatment period. The last period before the shock serves as the

baseline category. The bands report 95% confidence intervals. The black solid line reports, in each figure, the

average number of patents computed through linear interpolation on the pre-treatment periods. Referenced

on page(s) 17.
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Figure C.4. The Dynamic Effect of Shocks to US Innovation on Innovation in the UK: Alter-

native Estimator

(a) Patents Pooled Across Technologies
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Notes. This Figure displays how shocks to US innovation activity impact innovation in the UK. In Panels C.4a

and C.4c, the unit of observation is a district observed at a yearly frequency between 1870 and 1930; in Panels

C.4b and C.4d, the unit of observation is a district-technology pair, observed over the same time. The dependent

variable is, in Panels C.4a–C.4b, the (log) number of patents, and in Panels C.4c–C.4d, the average text-based

similarity of the UK patents issued in a given period to US patents issued in the previous five years. Each dot

reports the coefficient of an indicator variable which codes the time since the observation unit is exposed to

a shock to US innovation activity through emigration ties. We employ the estimator developed by Sun and

Abraham (2021) to account for the staggered roll-out of the shocks across observation units. The black dashed

line indicates the treatment period. The last period before the shock serves as the baseline category. In Panel

C.4a, the regression includes district and year-fixed effects, and standard errors are clustered at the district

level; in Panel C.4b, the regression includes district-by-year, technology-by-year, and district-by-technology

fixed effects, and standard errors are clustered at the district level. The bands report 95% confidence intervals.

Referenced on page(s) 26, C46.
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Figure C.5. The Dynamic Effect of Shocks to US Innovation on Innovation in the UK: Poisson

Quasi-Maximum Likelihood Regressions

(a) Patents Pooled Across Technologies
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Notes. This Figure displays how shocks to US innovation activity impact innovation in the UK. In Panel C.5a, the

unit of observation is a district observed at a yearly frequency between 1870 and 1930; in Panel C.5b, the unit of

observation is a district-technology pair observed over the same time. The dependent variable is the number of

patents winsorized at the 1% level. Each regression is estimated using the Poisson quasi-maximum likelihood

estimator described in Correia et al. (2020). Each dot reports the coefficient of an indicator variable, which codes

the time since the observation unit is exposed to a shock in US innovation activity through emigration ties.

The black dashed line indicates the treatment period. The last period before the shock serves as the baseline

category. In Panel C.5a, the regression includes district and year-fixed effects; in Panel C.5a, the regression

includes district-by-year, technology-by-year, and district-by-technology fixed effects. Both regressions control

for the total number of patents in the pre-treatment period interacted with a post-treatment indicator variable.

Standard errors are clustered at the district level. The bands report 95% confidence intervals. Referenced on

page(s) 24.

C68



Figure C.6. The Effect of Shocks to US Innovation on UK Innovation: Alternative Standard

Errors

(a) Patents Pooled Across Technologies
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Notes. This Figure displays the effect of shocks to US innovation activity on innovation produced in the United

Kingdom using various estimators for the standard errors. In Panel C.6a, the unit of observation is a district

observed at a yearly frequency between 1870 and 1930; in Panel C.6b, the unit of observation is a district-

technology pair observed over the same period. The dependent variable is the (log) number of patents. Each

dot reports the coefficient of the treatment variable, which is equal to one for all years after the observation unit

is exposed to a shock to US innovation activity. The definition of exposure is provided in the main text. All

regressions in Panel C.6a include district and year fixed effects; all regressions in Panel C.6b include district-

by-year, technology-by-year, and district-by-technology fixed effects. We consider various estimators for the

standard errors: robust to heteroskedasticity; clustered by district, technology, and two-way by district and

technology; robust to heteroskedasticity and autocorrelation at various bandwidths; and robust to spatial au-

tocorrelation following (Conley, 1999) at various bandwidths. All confidence bands report 95% confidence

intervals. Referenced on page(s) 26, C45.
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Figure C.7. Dynamic Shocks to US Innovation Activity

(a) Double Differences
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Notes. This Figure reports the “first stage” of the shocks to US innovation, i.e., how much innovation in the

US increases in the period following what we define as a shock. In Panel C.7a (resp. C.7b), the unit of obser-

vation is a county (resp. county-technology pair) observed at a yearly frequency between 1870 and 1930. The

dependent variable is the (log) number of patents. Each dot reports the coefficient of an indicator variable that

codes the number of periods since the observation units undergo an innovation shock. Regressions in Panel

C.7a (resp. C.7b) include county and year-fixed effects (resp. county-by-year, technology-by-year, and county-

by-technology fixed effects). Standard errors are clustered at the county level. Bands report 95% confidence

intervals. Each graph reports separately the F-statistics of joint significance of the pre-and post-treatment coef-

ficients, along with their p-values. Referenced on page(s) 21, C46.
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Figure C.8. Within-Neighborhood US Emigration: Alternative Neighborhood Threshold
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Notes. This Figure reports how emigrants to the United States impact the innovation activity fulfilled by their

neighbors who remain in the UK. The unit of observation is an individual inventor observed at a yearly fre-

quency between 1880 and 1900. The analysis sample is the universe of inventors linked to the 1891 population

census, as detailed in the main text. The dependent variable is the (log) number of patents produced by the

members of the family. Each dot reports the coefficient of a treatment variable equal to one after the first neigh-

bor of the inventor moves to the US, and zero otherwise. A neighborhood is defined as a k-kilometer radius

area around each inventor. Each dot refers to a different definition of neighborhood with k equal to 1, 2, 3, 5, 10,

and 20 kilometers. The baseline case reported in the main text assumes k = 5. All regressions include inventor

and year-fixed effects. Standard errors are clustered at the county level. Bands report 95% confidence intervals.

Referenced on page(s) 29, C47.
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