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Abstract

How does innovation diffuse across countries? In this paper, we document that out-migration

promotes the diffusion of innovation from the country of destination to the country of origin

of migrants. Between 1870 and 1940, nearly four million British immigrants settled in the

United States. We construct a novel individual-level dataset linking British immigrants in the

US to the UK census, and we digitize the universe of UK patents over 1853–1899. Using a new

shift-share instrument for bilateral migration and a triple-differences design, we document

that migration ties contribute to technology diffusion from the US to the UK. Through high-

dimensional text analysis, we find that emigrants promote technology transfer, but they also

nurture the production of original innovation. Physical return migration is an important

driver of this “return innovation” effect. However, we find that the interactions between

emigrants and their origin communities promote technology diffusion, even absent return

migration. Additionally, we show that migration ties propel knowledge flows by fostering

cross-border market integration.
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1 Introduction

Technological progress and, thus, economic growth hinge on the diffusion of knowledge across countries

(Griffith et al., 2006; Comin and Hobijn, 2011). Eaton and Kortum (1999), for instance, estimate that in the

1980s, approximately 70% of productivity growth in advanced European countries relied on technology

developed in the United States and Japan.1 Recent models emphasize that exposure to foreign technology

is crucial for the cross-country diffusion of innovation (Alvarez et al., 2013; Buera and Oberfield, 2020).

Empirically, however, estimating the impact of exposure to foreign technology on domestic innovation

is challenging because it requires observing joint variation in the intensity and composition of exposure

across observation units—e.g., firms or regions—and technologies.

In this paper, we overcome this challenge by studying out-migration as a novel source of knowledge

diffusion from the country of destination to the country of origin of migrants. Drawing on the British

mass migration to the United States (1870–1940), we observe that, within Britain, migration ties impact

exposure to US technology along two margins. First, exposure in Britain is more intense in regions with

higher US emigration rates. Second, emigrants are exposed to different technologies depending on where

they settle across the US. By combining these two components, out-migration offers an ideal test to esti-

mate the impact of exposure to foreign knowledge on innovation.

Leveraging this insight, we present novel, causal evidence that exposure to foreign technology through

out-migration linkages contributes to the diffusion of innovation to emigration countries.2 To the best of

our knowledge, this is the first paper to document this phenomenon, which we label the “return inno-

vation” effect. Compared to the influential “brain drain” hypothesis (Docquier and Rapoport, 2012), this

paper thus introduces a new and competing perspective on the effects of out-migration on the economic

development of emigration countries. We find that physical return migration is an important driver of

the return innovation effect. However, we present evidence that the interactions between the emigrants

and their origin communities—families and former neighbors—further promote technology diffusion

in the absence of physical return migration. Moreover, migration ties foster cross-country market inte-

gration, which facilitates innovation diffusion into the emigration country.

The impact of emigration on innovation is ambiguous. Traditional “brain drain” arguments suggest

1Economic historians have long argued that the diffusion of knowledge is a key driver of productivity growth and catching

up (e.g., see Gerschenkron, 1962; Rosenberg, 1982). However, endogenous growth models featuring cross-country diffusion

dynamics have emerged only recently (Benhabib et al., 2021; Perla et al., 2021; Van Patten, 2023).
2A vast scholarship documents that immigrants actively contribute to several dimensions of economic development in their

destination countries spanning entrepreneurship (Kerr and Kerr, 2020; Azoulay et al., 2022), innovation (Ganguli, 2015; Bahar

et al., 2019; Burchardi et al., 2020; Bernstein et al., 2022) and science (Moser et al., 2014, 2020), local specialization (Ottinger,

2020), and the formation of political preferences (Giuliano and Tabellini, 2020). As pointed out by Clemens (2011), emigration

has generally generated far less attention than immigration.
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that emigration countries suffer from a loss of human capital (for a review, see Gibson and McKenzie,

2011). Growth theory, in turn, predicts that this depletion would negatively hamper their ability to in-

novate (e.g., Jones, 1995). On the other hand, recent scholarship suggests that exposure to innovation

is crucial for innovation activity (Akcigit et al., 2018; Bell et al., 2019). Therefore, we argue that as mi-

grants are exposed to innovation in the areas where they settle, they promote knowledge flows between

those areas and their origin country, as documented qualitatively by Saxenian (2006). Since this “return

innovation” effect and the “brain drain” channel operate in opposing directions, empirical evidence is

necessary to assess the impact of out-migration on innovation in emigration countries.

We examine this question in the context of the English and Welsh migration to the United States

between 1850 and 1940, when approximately 30 million European migrants settled across the Atlantic.

Nearly four million came from Britain.3 Since Rosenberg (1982), economists have interpreted the spread

of the Industrial Revolution in terms of waves of technological diffusion originating in Britain. Hence,

existing studies document that European immigrants contributed to the diffusion of (mainly) British

technology in the US (Jeremy, 1981). This pattern reflects the British technological leadership during

the first half of the nineteenth century. Since as early as the 1860s, however, the US approached the

technology frontier in many industries, from interchangeable parts and machine tools to engines and

agricultural machinery (David, 1966; Rosenberg, 1970; Rosenberg and Trajtenberg, 2004).4 It is therefore

plausible, although unexplored, that migration ties promoted the diffusion of these technologies back to

Britain, which, throughout this period, increasingly lagged behind the newly industrialized countries.

Besides its historical importance, this setting allows us to overcome three limitations of contempo-

rary scenarios that hindered previous attempts to study this question. First, our novel individual-level

dataset allows us to look at the entire population of transatlantic migrants. Second, we measure inter-

national knowledge flows using historical patent data. This approach would be infeasible with contem-

porary data due to international intellectual property protection in force since 1945.5 Finally, the near-

complete absence of migration regulations targeting British migrants ensures that possibly endogenous

policy interventions do not confound the analysis.

3This figure does not include the Irish. In the paper, we focus on the English and Welsh migration. We use, for the sake of brevity,

the terms “British” and “English” as shortcuts to collectively refer to England and Wales, thus excluding Scotland.
4By the 1890s, the American technological primacy was well-established. Nelson and Wright (1992) note that starting in the

1880s, American technology saw major advancements in textiles, sewing machines, clocks, firearms, boots and shoes, locomo-

tives, bicycles, and cigarettes. Starting in the 1890s, mass production led to innovations in consumer products (canned goods,

dairy, and grain products), light machinery (typewriters, cameras), electrical equipment, and industrial machinery, such as

boilers, pumps, and printing presses.
5At the time, the same invention could be patented by different people in the US and in the UK with no legal penalty. Additionally,

the British patent office required that at least one applicant—usually a patent agent for foreign inventors—be a permanent

resident in the UK.
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To estimate the effect of out-migration on innovation, we observe that districts in the UK would be

exposed to different technologies depending on the US county where emigrants from those areas would

settle.6 Our research design thus leverages the joint variation in county-level specialization across tech-

nology classes and district-county bilateral migration flows. Consider two English districts, say Stafford-

shire and Camden, and two US counties, say San Diego and Cook. Assume hypothetically that Stafford-

shire and Camden are observationally identical, but all emigrants from Staffordshire settle in San Diego

County, whereas all those originating in Camden move to Cook County. Suppose that San Diego County

specializes in shipbuilding, whereas Cook County specializes in chemistry. Then, Staffordshire will be

exposed to shipbuilding technology, whereas Camden will be exposed to innovations in chemistry.

We assemble two novel, detailed, general-purpose datasets to overcome the limitations of the exist-

ing sources. First, since the available data do not contain information on the origin of British immigrants

within the UK, we leverage confidential individual-level UK and US census data to link individual records

of British immigrants in the US to the UK census (Schurer and Higgs, 2020; Ruggles et al., 2021). The result-

ing novel dataset allows us to track individual out-migration and return migration between the US and

the UK. Second, to reconstruct the geography of innovation in the UK in the second half of the nineteenth

century, we digitize the universe of 300,000 original patent documents issued in England and Wales be-

tween 1853 and 1899. We thus assemble the first comprehensive dataset covering patented innovation

during the Second Industrial Revolution in the United Kingdom.

The granularity of our data allows us to deal with the potential endogeneity of exposure to US knowl-

edge. The primary reason that would caution against a causal interpretation of the estimates is assorta-

tive matching, namely the possibility that British migrants sort across US counties depending on where

they came from. Suppose, drawing on the previous example, that Staffordshire specializes in shipbuild-

ing. Then, Staffordshire would be exposed to shipbuilding technology because emigrants from that dis-

trict settle in San Diego County, which also specializes in shipbuilding, but the coefficient of a naïve

regression between knowledge exposure and innovation would conflate pre-existing specialization pat-

terns into the treatment effect of exposure to US technology.7

We develop two approaches to deal with this potential source of endogeneity. First, we build a shift-

share instrumental variable that exploits conditional variation in the connection timing to the US railway

network to construct county-level immigration shocks (Sequeira et al., 2020). These shocks allow us

to randomize British immigration across counties and avoid the assortative matching issue (Borusyak

6In most of the analysis, the units of observation are UK registration districts and US counties. In 1901, there were 631 registration

districts in England and Wales. Districts were comparable to US counties in terms of population (approximately 40,000). Unlike

counties, however, registration districts were statistical entities that did not enjoy political or budgetary autonomy.
7This example serves illustrative purposes, but our baseline research design non-parametrically rules out the possibility that

differences in initial specialization across UK districts drive our results.
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et al., 2022). Second, we note that the return innovation effect would imply that shocks to innovation

activity in the United States—defined as unusually large deviations from the average yearly number

of patents by technology class—would diffuse to UK districts whose emigrants had settled in the areas

where these shocks manifest. To test this hypothesis, we implement a triple differences analysis that

compares districts and technology classes by exposure to innovation shocks in the US.

Our main result is that innovation in the UK shifts in response to exposure to US innovation through

migration linkages. The instrumental variable design confirms the existence of a causal link between

exposure to US knowledge and innovation in the UK. The triple differences analysis provides evidence

that innovation shocks in the US diffuse into the United Kingdom through migration ties. We estimate

that exposure to an innovation shock in the United States—which, on average, is associated with twenty

more patents in a given county-technology class pair—results in two more patents produced in the UK.

This implies a 10% pass-through rate of US innovation shocks to Britain through migration ties. This

figure is sizable, as it accounts for approximately one-third of the average annual number of patents by

district technology class in Britain. This result, which we label the “return innovation” effect, is larger in

industries in which the UK was relatively more specialized than the US. Exposure to foreign knowledge

through migration ties thus appears to nurture existing industries rather than creating new ones.

We then ask whether the knowledge flows generated by migration linkages stimulate technology

transfer between the US and Britain or if they propel original innovation in the UK. To do so, we adopt a

text-based approach that quantifies (i) the similarity between UK patents and previous US patents and (ii)

the “originality” of the former with respect to the latter. We find that areas more exposed to US knowledge

produce patents that are more similar to those granted in the United States. We also estimate that those

areas produce more innovative patents compared to the existing stock of US knowledge. These results

are not contradictory. In the immediate aftermath of a US innovation shock, the similarity of newly

produced UK patents with previous US patents increases. However, in later periods, original patents

take over the bulk of the increased innovation activity. Taken together, these results indicate that return

innovation conflates two margins: a technology transfer catching-up effect à la Gerschenkron (1962) and

a positive spillover channel that stimulates the production of novel knowledge.

In the second part of the paper, we exploit the richness of our data to explore the mechanisms that

underlie the return innovation effect. On the one hand, return innovation may require the physical

return of migrants. On the other, however, migration ties may promote the diffusion of technology ir-

respective of physical return. We find that physical return is an important but not the exclusive driver

of return innovation. Interactions between emigrants and their communities of origin further promote

technology diffusion even absent physical return. Moreover, we provide indirect evidence that migration

ties foster cross-border market integration, further facilitating innovation diffusion into the UK.
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Since our data allow us to observe return migration at a high level of spatial granularity, we can mea-

sure exposure to US technology through return migrant flows and compare it with the effect of outward

emigration flows. We find that return migration accounts for approximately half of the overall return

innovation effect. Importantly, however, the effect of exposure to US technology through out-migration

ties remains sizable and significant even if we control for return inflows. This result suggests that re-

turn migration is an important determinant of return innovation, but it also indicates that migration ties

contribute to the diffusion of knowledge even absent physical return.

We first explore the role of interactions between emigrants and their communities of origin as a

driver of technology diffusion. We focus on two factors that could promote such interactions: family ties

and geographical proximity. Our results connect to a large literature in development economics which

links the diffusion of technology to network interactions (e.g. Bandiera and Rasul, 2006; Conley and Udry,

2010; Beaman et al., 2021). Then, we study the channels through which migration ties impact innovation

in emigration countries without directly relying on personal relationships between the emigrants and

their origin communities.

We find that the family members of US emigrants display increased patenting activity after their rel-

ative moves to the US. It takes about ten years for a British emigrant to contribute to innovation activity

back home. Despite this delay, the magnitude of the effect is substantial. Importantly, we can distin-

guish between emigrants who, at some point, return to the UK from those that do not. The impact of

return emigrants is considerably larger than that of those who never return. This further confirms that

return migration is a major driver of return innovation. At the same time, however, emigrants promote

innovation in their families even if they never return. Overall, since return emigrants account for ap-

proximately one-third of the entire migrant stock, the magnitude of these effects is, in aggregate, similar.

The geographical proximity between emigrants and their former neighbors can be interpreted as an

alternative proxy for local social networks. To estimate its impact on the innovation activity of stayers,

we leverage the individual-level nature of our migration and patenting data. Using a linked patent-census

sample and geo-coded information on the universe of the UK population, we find that patenting activity

increases for non-migrants after their neighbor(s) migrate(s) to the United States.8 Moreover, the esti-

mated effect remains positive and significant when restricting the treatment to include only US migrants

who never return. These results strongly suggest that cross-country interactions between emigrants and

their origin communities are a key driver of return innovation, even absent physical return.

Building on previous literature, we provide indirect evidence that migration ties contribute to cross-

border market integration, thus promoting knowledge flows. We leverage the introduction of the first

8In the baseline exercise, two individuals are considered as neighbors if they live in the same street. However, in robustness

regressions, we define neighborhoods as areas of a 100-meter radius centered around each individual in the sample.
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transatlantic telegraph cable connecting the US and the UK in 1866 as a sudden and sizable increase

in the integration of the British and the American markets.9 In a difference-in-differences setting, we

show that districts with higher US emigration rates before the introduction of the transatlantic telegraph

cable display higher patenting activity after 1866. Moreover, innovation does not increase evenly across

technology classes. The gains in patenting activity manifest in those same technologies that districts had

been more exposed to through migration ties. This suggests that the increased economic integration

generated by the telegraph accrued relatively more to districts that had pre-existing migration ties with

the US market.

To provide additional evidence that migration ties foster market integration, we study trade disrup-

tions arising from the Smoot-Hawley Act (1930), which severely increased US import duties. Trade is

commonly interpreted as a measure of cross-border market integration. Importantly, the tariff increase

was not homogeneous across goods categories. Leveraging this cross-industry variation, we find that

patenting in the UK decreases in districts more exposed—through migration ties—to technologies that

the Act targeted more heavily. This result suggests that migration ties promote market integration, which

facilitates cross-border knowledge diffusion.

Finally, we investigate whether the information flows generated by migration ties are restricted to

innovation or if they encompass a broader set of subjects. We collect data on the coverage of US-related

news from a comprehensive repository of historical British newspapers. We find that newspapers in ar-

eas with more US emigrants are relatively more likely to cover US-related news. Newspaper coverage of

a given state (resp. county) is broader in districts with more emigrants to that given state (resp. county).

This exercise suggests that the scope of information flows generated by migration ties is not limited to

innovation and encompasses a broader set of topics.

This paper provides new evidence on how knowledge diffuses across countries. More specifically,

we find that exposure to foreign technology through migration ties contributes to the diffusion of inno-

vation from the country of destination to the country of origin of migrants. Our results imply that out-

migration can promote innovation and, thus, long-term growth by fostering the diffusion of knowledge

into emigration countries. Despite cautions on external validity, ever-increasing international human

mobility and advancements in communication technology suggest that our results bear relevant policy

implications for economic growth, especially in developed countries.

Related Literature. This paper is related to four streams of literature. First, we contribute to the lit-

erature that studies the determinants of the direction of innovation and the allocation of research ac-

9The telegraph represented a fundamental development in information and communication technology. Steinwender (2018)

documents that the transatlantic cable allowed information to flow more rapidly and efficiently across the Atlantic Ocean, thus

enabling trade and reducing international arbitrage opportunities.
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tivity across technological sectors. Pioneering work on directed technical change by Hicks (1932) and

Habakkuk (1962) was formalized by Acemoglu (2002, 2010). More recently, this question has been stud-

ied both theoretically (Bryan and Lemus, 2017; Hopenhayn and Squintani, 2021; Acemoglu, 2023) as well

as empirically (Hanlon, 2015; Aghion et al., 2016; Moscona, 2021; Moscona and Sastry, 2022; Einiö et al.,

2022; Gross and Sampat, 2022). We inform this literature by introducing one novel determinant of the

direction of innovation, namely, international human mobility, through the return innovation effect.10

Second, we contribute to the literature that studies the effects of out-migration on countries sending

migrants. Emigration has been shown to impact wages (e.g., Dustmann et al., 2015), attitudes towards

democracy and voting (Spilimbergo, 2009; Batista and Vicente, 2011; Ottinger and Rosenberger, 2023)

and political change (Chauvet and Mercier, 2014; Kapur, 2014; Karadja and Prawitz, 2019), technology

adoption (Coluccia and Spadavecchia, 2022), entrepreneurship (Anelli et al., 2023), and social norms

(Beine et al., 2013; Bertoli and Marchetta, 2015; Tuccio and Wahba, 2018). This paper provides new evi-

dence that emigration shapes the dynamics and the direction of innovation because it exposes sending

countries to novel knowledge produced abroad. This enriches the traditional narrative that reduces

out-migration to a mere depletion of the human capital stock.

By its setting, this paper adds to the literature that studies technical change and diffusion of novel

technologies during the Age of Mass Migration. A growing number of papers examines the short-run

(Arkolakis et al., 2020; Moser et al., 2020) as well as the long-run (Akcigit et al., 2017; Burchardi et al., 2020;

Sequeira et al., 2020) implications of immigration on US innovation. Ottinger (2020) shows that European

immigration influenced US industry specialization. This paper is closest to Andersson et al. (2022). They

show that mass out-migration in Sweden triggered labor-saving innovation by increasing the relative

cost of labor. Instead, we look at the diffusion of technology from the areas where migrants settle to those

they originate from. We are thus able to dissect the impact of out-migration on technology diffusion from

the US to Britain. We show that migration ties facilitate the cross-border diffusion of technologies and

find that information flows, rather than physical return migration, is the main underlying channel of

this “return innovation” effect.

Finally, we relate to the literature studying the dynamics and determinants of knowledge flows and

technology diffusion across countries (among others, see Jaffe et al., 1993; Griffith et al., 2006; Bahar et al.,

2014; Pauly and Stipanicic, 2021). Specifically, we contribute to the papers documenting how human

mobility fosters the diffusion of novel knowledge (Kerr, 2008; Hornung, 2014; Bahar et al., 2019, 2022a;

Prato, 2021). We contribute to this literature from several perspectives. First, we enlarge the observation

sample to include the universe of emigrants instead of a selected subgroup of highly skilled individuals.

10A related literature highlights that the direction of innovation bears relevant consequences in terms of subsequent technical

change because it can lead to technology lock-ins (Dosi, 1982; Arthur, 1989; Acemoglu and Lensman, 2023).
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Second, we leverage recent insights by Akcigit et al. (2018) and Bell et al. (2019) and show that exposure

to foreign technology is a major driver of technology transfers. Third, we emphasize that the return

innovation effect does not exclusively hinge on the physical return of emigrants. Finally, our setting

allows us to uncover the long-run effects of emigration and the mechanisms through which it affects

innovation in the home country of emigrants.

Outline. The rest of the paper is structured as follows. In section 2, we describe this study’s historical

and institutional context. Section 3 introduces the novel datasets we construct. We present the em-

pirical research design in section 4 and discuss the main findings in section 5. Section 6 uncovers the

possible mechanisms underlying the results and discusses possible alternative interpretations. Section

7 concludes.

2 Historical and Institutional Background

This section offers a concise overview of the historical and institutional features of our study setting.

Throughout it, we highlight key aspects and details that were relevant to the empirical investigation.

We conclude by presenting three examples of technology transmission to the UK operated by British

immigrants in the US.

2.1 The English and Welsh Migration to the United States

Between 1850 and 1940—during the so-called Age of Mass Migration—more than 30 million Europeans

migrated to the United States (Abramitzky and Boustan, 2017). Migrants from Great Britain—England

and Wales in particular—accounted for approximately 10% of this flow (Willcox, 1928). Emigration rates

in Britain were among the highest in Europe, except for the years 1890–1900. They steadily increased

throughout the period (Baines, 2002).11

2.1.1 Migration Policy in the United Kingdom and the United States

The virtual absence of legal constraints to human mobility represents a major appealing feature of the

Age of Mass Migration for economic research. Until 1917, the US applied minor restrictions on European

immigration (Abramitzky and Boustan, 2017).12 Immigrants mostly originated from Northern Europe,

particularly the United Kingdom, Ireland, Germany, Sweden, and Norway. This positive attitude towards

11Only Ireland, Italy, and Norway had higher emigration rates, although, in England, massive out-migration spanned longer than

in the other countries above.
12Immigration from China had been severely restricted since as early as 1882. Restrictions on European immigration before

1917 targeted selected groups, such as convicts and disabled persons. In 1917, Congress passed an act that sanctioned legal

immigrants’ detention and deportation if they committed a crime within five years of their arrival. The act also imposed

literacy tests, which, however, did not significantly impact immigration from European countries (Goldin, 1994).
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immigration ceased as flows from Eastern and Southern Europe increased in the 1890s (Goldin, 1994).

The restrictive immigration policies of the 1920s, however, allotted generous quotas to the United King-

dom, which were never filled (Abramitzky and Boustan, 2017).13

Like in other European countries, out-migration legislation in the UK sought to help emigrants, if not

explicitly to foster emigration (Baines, 2002, p. 72). Out-migration was encouraged in two ways: reduced

and subsidized ticket fares and allotment of agricultural lands. Policy efforts were directed towards the

Empire, particularly Canada and Australia, through the Committee of the Emigrants’ Information Office.

In general, however, these policies were not successful. Baines (2002) argues that less than 10% emigrants

traveled under government assistance during the entire 1814-1918 period, and Leak and Priday (1933)

report similar figures for the post-War era. Emigration to the United States was neither subsidized nor

discouraged. Attitudes towards out-migration remained positive after the First World War. The perceived

slowdown of emigrant flows after the War was viewed with concern by policymakers (Leak and Priday,

1933).

This overview suggests that institutional constraints to US out- and immigration were largely absent

for English and Welsh migrants throughout the XIX and early XX century. Compared to contemporary

scenarios, this historical setting thus allows us to abstract from confounding factors arising from endoge-

nous migration legislation.

2.1.2 English and Welsh Emigrants: The Perspective of Great Britain

Compared to the broader European phenomenon, the British migration to the US presents two main

distinctive features.14 First, unlike continental countries, Britain was already highly urbanized and in-

dustrialized at the inception of the Mass Migration. Erickson (1957, 1972) and Thomas (1954) highlight

the centrality of urban areas which, starting in the 1880s, supplied the majority of overseas migrants.

Baines (2002) provides some estimates on the origin of migrants based on birth certificates over the

years 1850–1900. Emigration ratios were highest in Northern and South-Western England and lowest

in Lancashire and neighboring areas. Second, the selection of British migrants radically differed from

that in continental countries (Erickson, 1957; Abramitzky et al., 2020). Compared to the occupational

structure of Great Britain, migrants were less likely to be employed in agriculture and more likely to be

low and high-skilled industrial workers (Baines, 2002, p. 83). Until the 1880s, British emigrants generally

13The 1921 (resp. 1924) Act computed the quota for a given country as 3% (resp. 2%) of the population from that country that

was recorded in the US census in 1910 (resp. 1880). This scheme favored first-wave immigration countries, such as the United

Kingdom and Germany, at the expense of new ones, as recommended by the Dillingham Commission (Higham, 1955).
14Throughout the period, the US was the most relevant destination for English and Welsh migrants. Between 1850 and 1930,

more than 40% emigrants settled in the US. This compares to 25% in Canada, 20% in Australia, and 15% in other destinations

(Baines, 2002, p. 63).
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came from rural areas and, consequently, the vast majority were farmers. However, as cities and smaller

urban centers gained prominence, migrants were increasingly employed in industrial manufacturing oc-

cupations (Baines, 2002). At the beginning of the 1860s, when the transatlantic migration was taking off,

about 15% emigrants were employed in agriculture, and merely five percent were white-collar workers.

In the early 1900s, however, this composition had shifted as agriculture workers accounted for a mere

five percent of the overall emigrant stock, while those employed in white-collar occupations were 25%.

Our newly constructed migration database allows us to assess the historical evidence quantitatively.

In Appendix Table D.4, we compare individual-level characteristics of emigrants with the staying pop-

ulation. On average, emigrants were more likely to come from North West and South East England.

Moreover, they were less likely to be farmers. By contrast, emigrants’ share of high and low-skilled man-

ufacturing workers is substantially larger than among stayers. Similar—although less marked—patterns

were observed for return migrants. Appendix Figure C.6 displays the origin of emigrants over time at

the district level. The data vividly show that rural areas in central and south-western England, which

initially feature the highest emigration rates, were gradually replaced by urban industrial districts in the

North and South. Taken together, this evidence confirms the qualitative historical knowledge.

2.1.3 English and Welsh Immigrants: The Perspective of the United States

British immigrants have been central throughout the economic and political history of the United States

(Berthoff, 1953; Fischer, 1989). Several features distinguish the English from the continental transat-

lantic migrations. First, English and Welsh immigrants were, especially after the 1880s, artisans and

manufacturing workers, who settled where their skills were in highest demand (Berthoff, 1953).15 Tex-

tile workers from Manchester typically settled in Massachusetts, whereas coal miners from Southern

Wales mostly settled in the Midwest and Pennsylvania. In 1890, 63% British-born were employed in

manufacturing (Thistlethwaite, 1958). Second, English immigrants—unlike the Welsh—did not form eth-

nic clusters (Furer, 1972). Instead, they tended to be scattered around settlement areas in highly diverse

ethnic communities. Finally, British immigrants were economically successful and assimilated relatively

easily with the US-born population (Abramitzky et al., 2020).

We quantitatively evaluate these observations in Table D.5. First, we compare individual-level char-

acteristics observed in the US census between the US-born and the British immigrants. The analysis

suggests that British immigrants were substantially different from the average native. For example, they

were richer, more literate, and more likely to live in urban centers. Consequently, they were less likely to

be farmers and more likely to be employed in manufacturing occupations with high or low-skill content.

15Thistlethwaite (1958) presents one instructive example. The pottery industry, a highly skilled and labor-intensive sector, was

concentrated in the Five Towns of Staffordshire. As transatlantic migration ensued, ceramic workers located in just two locali-

ties: Trenton, New Jersey, and East Liverpool, Ohio.
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In addition, English immigrants were comparatively more concentrated in North Atlantic states and the

West and less in Southern states. Similar patterns emerge for return migrants.

These results, coupled with Table D.4, identify British immigrants in the US as part of an urban

industrial class of skilled and semi-skilled workers. This is crucial in our analysis: it would have been

much more difficult for illiterate farmers to facilitate knowledge flows across the Atlantic Ocean.

2.2 Intellectual Property Protection in the US and the UK

We measure innovation and knowledge flows using patent data. In this section, we briefly present the

key features of the British and American patent systems and discuss the state of international intellectual

property protection in the XIX and early XX centuries.

2.2.1 National Patent Systems

Britain established the world’s oldest continuously operating patent system in 1623-1624. Until 1850,

access to intellectual property protection was, however, difficult (Gomme, 1948; Bottomley, 2014). Fees

amounted to approximately four times the average income in 1860, and the application process was

lengthy and rife with uncertainty (Dutton, 1984). A large literature documents the poor performance of

this system during the Industrial Revolution (Macleod, 1988; Moser, 2012). The 1852 Patent Law Amend-

ment Act sought to reform this process. The US system inspired the reform effort, which reduced ap-

plication fees and attempted to streamline bureaucratic procedures. One subsequent reform in 1883

further reduced fees, allowed applications by mail, designed a litigation system and provided for the

employment of professional patent examiners (Nicholas, 2011). A technical examination of novelty was

introduced only in 1902. Until 1907 patents were granted conditional on the invention being produced

in Britain (Coulter, 1991).

The first article of the United States Constitution establishes that inventors be granted exclusive

rights over their discoveries. In 1836 the US Congress passed the Patent Act, which formally instituted

the US Patent Office (USPTO). The USPTO has been credited as the first modern patent system in the world

(Khan and Sokoloff, 2004). Two features distinguished the American patent system from its European

counterparts. First, an examination of novelty was carried out by professional examiners to ascertain

the originality of patent applications. Second, low application fees ensured that access to intellectual

property protection was widespread (Sokoloff and Khan, 1990). Several scholars documented how effec-

tively the US patent system fostered innovation well into the 20th century (Khan, 2020).

2.2.2 International Intellectual Property Protection

As national patent systems spread across Europe and the US during the 19th century, demands for inter-

national regulation increased. The Paris Convention—formally, the “Paris Convention for the Protection
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of Industrial Property”—of 1883 governed international patent protection (Penrose, 1951).

The Paris Convention emerged out of a decade of multilateral confrontations spurred by World Exhi-

bitions in Vienna (1873) and Paris (1878). The Convention introduced two major principles. First, nation-

als and residents of subscribing countries were guaranteed equality of treatment with nationals. This

concept, known as “national treatment”, rejects the principle of “reciprocity”, which maintains that na-

tionals in subscribing countries would be granted the same protection as their origin country. The United

States had vigorously demanded reciprocity (Penrose, 1951). Second, upon applying for a patent in one

member country under Article 4, inventors were granted a “right of priority” of six months. Patents

filed in foreign countries during the priority period would not invalidate the inventor’s claim for protec-

tion in other member countries. The provisions contained in Article 4 were central within the broader

legal apparatus (Penrose, 1951). However, patents obtained in one member state were not automati-

cally recognized by other countries. To effectively claim protection, inventors had to submit different

patent applications. This represented a substantial bureaucratic and financial burden. While the Paris

Convention—and its numerous amendments—are still in operation today, international patents were

established only in 1970. The UK joined the Convention in 1884, while the US waited until 1887.

The state of international intellectual property protection during our period is a major advantage of

this historical setting. Since the UK and the US did not mutually recognize patents, we can use them as an

informative proxy of knowledge flows between the two countries. This approach would be impracticable

in modern settings.

2.3 Anecdotal Evidence of Return Innovation

Who were the immigrants that contributed to the diffusion of US technology in Britain? History is rife

with examples of skilled artisans, entrepreneurs, and factory workers who were exposed to some novel

technology where they settled and promoted its diffusion, or in some cases appropriated it, in the UK.

In this section, we provide three instructive examples. All three are cases of return migration. His-

torical records typically focus on successful migrants who, upon returning, bring their technology to

their origin areas and promote economic development there. The statistical analysis that we present

later, however, suggests that this was only part of the story. In fact, we find that emigrants interacted

with their origin communities even without returning.

2.3.1 British Puddlers and the Kelly-Bessemer Process

An 1856 article published in Scientific American described a new patent granted in the UK to Henry

Bessemer (Wagner, 2008). Bessemer had discovered a new process, the would-be eponymous Besse-
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mer process, that, for the first time, allowed the production of inexpensive steel from molten pig iron.16

American inventor William Kelly complained:

“I have reason to believe my discovery was known in England three or four years ago, as a

number of English puddlers visited this place to see my new process. Several of them have

since returned to England and may have spoken of my invention there.”

(Wagner, 2008, p. 363)

The veracity of Kelly’s allegations remains unverified. They nonetheless indicate three important ele-

ments. First, American inventors knew that British immigrants posed a threat to the secrecy of their

inventions. Second, technology transfer did not necessitate the very upper tail of the human capital dis-

tribution. Skilled workers, such as puddlers, could be the agents of technology diffusion. Finally, the

precise mechanism that emerges is return migration. Kelly expects British puddlers to speak of “his”

invention upon returning to England.

2.3.2 Henry Marsden and the Industrialization of Leeds

Henry Rowland Marsden was born in Leeds to poor parents in 1823 (Curtis, 1875). At age twenty-five, he

emigrated to the United States, first to New York and then to Connecticut. There, he took on apprentice-

ships in engineering and metal-working firms. He obtained several engineering patents—chiefly related

to steam engines and pumps, including a “stone-crusher” which is still in use today. In 1862, Marsden re-

turned to Leeds, where he set up a flourishing business centered around his newly patented inventions.

A wealthy man respected for his philanthropic endeavors, he was elected mayor of Leeds in 1873. He

died in 1878 and is credited as one of the most prominent figures in the industrial development of Leeds.

2.3.3 Migrants as Agents of Technology Transfer: Wellstood & Smith Ltd.

The case of Stephen Wellstood and John Smith illustrates how international migration spurs technology

transfers across countries. At age 16, James Smith (1811–1886) left Bonnybridge, Scotland, and migrated

to the US. There, he established himself selling cooking stoves and married. However, as his wife got

ill, Smith returned to Bonnybridge and started re-selling imported stoves from the US. He soon realized,

however, that he could manufacture stoves directly in Britain. He then partnered with his long-time

friend Stephen Wellstood and opened a foundry. They patented the exact same cooking stove Smith had

been selling in the US and started a business that remained active until 1983.

16The Bessemer process was one of the most transformative technological developments of the nineteenth century (Rosenberg

and Trajtenberg, 2004).
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3 Data

This section presents our primary data sources and discusses the key methodology we adopt to assemble

the final datasets. We provide a more detailed description of the data in Appendix sections A, B, and C.

Table 1 lists the main variables and provides descriptive statistics.

3.1 Migration Data

To conduct our analysis, we need information on the origin of English and Welsh immigrants in the

United States within the United Kingdom. Currently available data, however, do not contain this infor-

mation. Neither the US nor the UK collected disaggregated data on, respectively, the origin of immigrants

and the destination of emigrants. We tackle this limitation of the data by developing a new dataset that

links British immigrants in the US to the UK census. This allows us to observe an individual in the UK

and to track him to his US census record after he emigrated.17 This is the first dataset that reconstructs

migration flows at this granular level of aggregation for a major European country in this period.18

To construct our linked dataset, we leverage non-anonymized individual-level data from the popu-

lation censuses in the United Kingdom (Schurer and Higgs, 2020) and the United States (Ruggles et al.,

2021). We first extracted the universe of British immigrants from the US censuses in 1900, 1910, 1920,

and 1930.19 These list, among other variables, the name and surname, birth year, and immigration year

of each migrant. We then match these records to the closest census when they appear. Hence, for exam-

ple, we try to link an individual who immigrated to the US in 1905 to the 1901 UK census.20 The matching

variables we consider are the name, surname, and reported birth year. We use state-of-the-art census-

linking algorithms adapted from pioneering work by Abramitzky et al. (2021). Appendix C.1 lists in more

detail the primary sources and the technical implementation of the algorithm. This class of linking al-

gorithms relies on the observation that a simple exact matching routine would artificially discard many

17Throughout the paper, we use the masculine to refer to individuals in our data because, as we explain in detail later, we can

only work with male individuals.
18Data assembled by Abramitzky et al. (2014) and Andersson et al. (2022) serve a similar purpose for, respectively, Norway and

Sweden. England and Wales, however, were substantially larger in terms of the overall population and the US immigrant pop-

ulation. The population of Sweden and Norway in 1890 was approximately 4.7 and 2 million. In the same year, the population

in England and Wales stood at 27 million.
19We cannot use information contained in the 1870 and 1880 censuses because the immigration year was not recorded.

Individual-level data from the 1890 census have not survived.
20Because no census was taken in 1870, we match those who migrated between 1870 and 1881 to the 1860 census. Moreover,

since the last available UK census was in 1911, we match all those who emigrated after 1911 to that one. This implies that we

have no information on migrants born after 1911. Since the median age of migrants is 30 and less than 10% of the distribution

is younger than 19 in the rest of the sample, this bears little quantitative implications for the matching rate in the later part of

the sample.
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plausible links between the two sources because of minor coding errors by the census enumerators.

Since human hand-checking is unfeasible, we implement an algorithm that returns a match whenever

the string similarity between the US and the UK records is above a certain threshold, conditional on the

birth year.

This approach presents some important caveats (Bailey et al., 2020). First, it may deliver spurious

links if the matching variables are insufficient to restrict the pool of potential matches. Second, the

matching probability may be correlated with individual characteristics. This would be the case if, for

instance, the likelihood that names and surnames were correctly enumerated in the censuses correlated

with education. We discard the matches that do not attain a high level of string similarity to address the

first concern. Moreover, we only keep immigrants matched with up to two records in the UK census. This

ensures that we minimize the rate of false positives as much as possible. We provide evidence against

the second issue in Table C.1, which shows that the correlation between the number of matches and

individual-level observable characteristics is seldom significant, and always very small in magnitude.

We perform one additional exercise to assess the plausibility of the linked migrant sample. Following

Abramitzky et al. (2021), we construct an intergenerational linked sample that identifies individuals in

census decade 𝑡 in the subsequent census in decade 𝑡 + 10. The underlying rationale is that the matching

rate in this intergenerational linked sample should be lower for US emigrants than for the non-migrant

population. We discuss this approach in more detail in Appendix section C.2.3. Figure C.4 reports the re-

sults of this exercise. We link approximately 40% non-migrants to an individual in the following decade.

As expected, this figure decreases to 20% for US emigrants. This exercise thus provides reassuring ev-

idence that the UK-US linked sample can confidently identify migrants. Moreover, Figure C.5 confirms

that the migratory flows in the baseline sample are highly consistent with those that are obtained by

repeating the UK-US linking but excluding individuals that are matched in the intergenerational linked

sample.

Finally, we construct a dataset of return migrants. To assemble it, we apply the exact previous logic,

except that migrants are matched to the UK censuses taken in the decades after their immigration year.

Hence, as an example, someone who migrated to the US in 1895 is matched to censuses in 1901 and 1911.

To avoid double counting, if a migrant is matched to more than one census, we keep the match(es) in

the first. Data on return migrants are generally scant historically and with modern data (Dustmann and

Görlach, 2016). This exercise is thus a valuable feature of our methodology.

In Figure 1, we report in gray the number of English and Welsh immigrants in the United States by

year of immigration, digitized from official statistics (Willcox, 1928). The blue line on the right 𝑦-axis

tabulates the number of immigrants in our linked dataset. We attain a matching rate of about 60% after

dropping multiple matches and links with below-threshold matching quality. Note that we are forced to
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discard women whose surname was likely to change after marriage. The matching rate aligns with the

literature on census linking (Abramitzky et al., 2021).21 Moreover, reassuringly, our data co-moves with

official statistics data. Figure 2 reports the spatial distribution of emigration rates across districts in the

final sample and highlights its cross-sectional spatial heterogeneity. In Appendix Figure C.6, we break

down the map by decade and uncover substantial variation in the origin of US emigrants over time.

3.2 Patent Data

We measure innovation activity using patents, as is standard in the literature (Griliches, 1998).22 Patents

for the United States have been digitized from original documents by Berkes (2018). The data contain,

among others, information on the authors’ addresses, the filing date, and the CPC patent classification.

We use these to construct a balanced panel dataset at the county-technology class-year level.23

Patents for the United Kingdom for the period 1895-1939 are collected from PATSTAT, which in turn

provides bulk access to data stored at the European Patent Office. These data contain information on au-

thors and CPC classes but do not report the geographic location of inventors. To retrieve the coordinates

of the inventors, we merge them with data by Bergeaud and Verluise (2022) and map them to regis-

tration districts at their 1890 borders. Patent data for previous years, unfortunately, are not currently

available. To tackle this data limitation, we digitize the universe of patents granted in England and Wales

between 1853 and 1895. As a result, we assemble a unique patent-level database that leverages textual

information from approximately 300,000 original patent documents.24 We have information on the ti-

tle, text, inventors’ geo-references addresses, filing and issue date, and other variables not used in this

paper. Next, we map patents to districts at 1890 borders. We then employ a simple machine learning clas-

sification algorithm, discussed in Appendix section B.1, to assign technology classes using information

contained in the titles.

This newly developed dataset is the first with geographical and textual information on the universe

of patents granted in England and Wales during the second half of the nineteenth century. Data by Han-

21In Appendix section C.2, we provide a more detailed discussion of the algorithm’s performance.
22Previous research shows that patents are not a flawless measure of innovation because non-patented innovation represents a

non-negligible share of overall technological progress (Moser, 2019). We nonetheless believe that this is a comparatively minor

issue for our analysis. As discussed in section 2.2, before our study period, the US and the UK had enacted important reforms

that decreased the cost of access to patent protection (Gomme, 1948). These drastically increased the number of patents in both

countries, thus ensuring that patents convey an informative picture of the state of technology in both countries.
23We map patents to counties at 1900 borders using the inventors’ coordinates. From the three-digit CPC class, we map patents

to a coarser taxonomy of twenty sectors. Appendix A.1 provides additional details.
24Appendix section B.1 describes the primary sources and methodology we develop to extract and structure the data from the

original documents. In section B.2, we compare our series with two existing series and find that the three are highly consistent

for the period of common support.
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lon (2016), for instance, do not list titles or texts and do not report geographic information. This dataset

thus expands previous work by Nuvolari and Tartari (2011) and Nuvolari et al. (2021) and provides the

first comprehensive assessment of innovation in Britain during the Second Industrial Revolution.

In some empirical applications, we link patent data to the census. This allows us to assign a unique,

consistent identifier to single inventors appearing in multiple patents and to observe individual-level

characteristics recorded in the census. To perform this linking, we match inventors based on the string

similarity between their name and surname and those recorded in the census, conditional on geographic

proximity. We describe the precise implementation in Appendix section A.3.

3.3 Other Variables

In this section, we provide a brief description of the additional data that we assemble. Appendix section

A.1 discusses each more diffusely.

3.3.1 UK Census Data

We assemble district-level statistics from population censuses at a decade frequency between 1851 and

1911. Districts are the level of observation in most of the analysis. This is because they were statistical

units with neither budgetary nor administrative authority. The average population was 40,000, which

makes them roughly comparable to US counties. Districts undergo minor boundary changes during the

analysis period. However, to ensure geographical consistency, we cross-walk all variables to districts in

1890 using the method described in Eckert et al. (2020). In particular, the census allows reconstructing

the employment shares across sectors and other demographic information.

3.3.2 Newspapers

We use newspaper coverage of US-related topics as a measure of attention to the United States in public

opinion. We collect the data from the British Newspaper Archive. Beach and Hanlon (2022) discuss

this dataset in detail. We run three sets of queries. First, we search for the joint mention of the words

“United States”; second, we search for mentions of each US state; third, we search for mentions of each US

county, jointly with either the state name or “United States”. We collect these data at the newspaper level

from 1850–1939. Additionally, we know each newspaper’s publishing address, which we geo-reference

to 1890-border districts. Ultimately, we assemble three datasets at the district, district-state, and district-

county levels, each at decade frequency. Figure A.3 reports the distribution of newspapers.

3.3.3 Telegraph Network

We reconstruct the English and Welsh telegraph network from Zeitschrift des Deutsch-Österreichischen

Telegraphen-Vereins, Jahrgang, volume IX, 1862. This directory lists all telegraph stations outside of Lon-
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don in 1862. To the best of our knowledge, it is the most comprehensive list before the establishment of

the transatlantic telegraph cable connecting the UK and the US (1866). We geo-reference all the stations

and assign them to 1890-border districts. Since, however, the source does not list stations in the London

area, in the sample of the telegraph analysis, we conflate London urban districts into a single “London”

unit, which we assume to be connected to the telegraph network. Figure A.4 reports the distribution of

the stations.

4 Empirical Strategy

This section describes our baseline empirical strategy. We discuss the potential caveats that hinder a

causal interpretation of the resulting estimates. Then, we discuss two strategies to address these con-

cerns.

4.1 Baseline Methodology

The central hypothesis of this paper is that exposure to foreign—in this case, American—knowledge

through migrant linkages shapes the direction of innovation of the country of origin of the emigrants.

We thus develop a simple measure of exposure to US knowledge that leverages two sources of variation.

First, local specialization across counties measures the knowledge that diffuses from those counties.

Second, the number of migrants that leave a given district and settle in a given county measures the

intensity of the return knowledge channel. To fix ideas, consider two districts, and call them 𝐴 and 𝐵.

The same number of emigrants 𝑛 leaves each district. Emigrants from 𝐴 settle in county 𝑎, which only

produces innovation in sector 𝑠𝑎. Emigrants from 𝐵 settle in county 𝑏, which only innovates in sector 𝑠𝑏.

Then, we expect district 𝐴 (resp. 𝐵) to innovate comparatively more in sector 𝑠𝑎 (resp. 𝑠𝑏).

To implement this intuition, we define knowledge exposure as follows:

Knowledge Exposure𝑖𝑘,𝑡 ≡
∑︁
𝑗∈ 𝐽

(
Patents 𝑗𝑘,𝑡
Patents 𝑗,𝑡

× Emigrants𝑖→ 𝑗,𝑡

)
(1)

where 𝑖, 𝑗, 𝑘, and 𝑡 denote a (UK) district, a (US) county, a technology class, and a decade, respectively.25

The set 𝐽 denotes the universe of counties. The knowledge exposure term thus averages district-level

exposure to county-level specialization across technology classes. The first term in the summation cap-

tures specialization, while the second term codes district-level exposure. One may argue, however, that

the relative share of patents may inflate the influence of specialization in counties with a small number

of granted patents. While this is unlikely to significantly bias our results as those countries would likely

have low district-level exposure, we code an alternative knowledge exposure variable that measures

25Throughout the paper, we refer to decade 𝑡 to mean the ten years before the upper bound 𝑡. Hence, the decade indexed by 1890

refers to 1881–1890.
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specialization as the raw count of patents in a given technology class. One further challenge to measure

(1) is that districts with larger bilateral linkages are probably larger and, hence, selected. To account

for district-level time-varying confounding variables, we control non-parametrically for district-by-time

fixed effects. However, we also report results for an alternative knowledge exposure that measures ex-

posure through relative emigrant shares. We discuss these alternative definitions in more detail in the

Appendix table E.2.

We estimate variants of the following regression model:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑡 + 𝛼𝑖×𝑘 + 𝛽 × Knowledge Exposure𝑖𝑘,𝑡 + 𝜀𝑖𝑘,𝑡 (2)

where the coefficient of interest (𝛽) quantifies the correlation between innovation activity and exposure

to foreign knowledge. The term 𝛼𝑖×𝑡 denotes district-by-decade fixed effects whose inclusion allows to

control non-parametrically for time-varying unobserved heterogeneity at the district level; the term𝛼𝑖×𝑘

denotes district-by-technology fixed effects and excludes variation arising, for example, from the possi-

bility that district-level technology specialization and immigration location decisions may be correlated.

We comment more on this second point in the next section. The error term is the 𝜀𝑖𝑘,𝑡 . Standard errors

in this specification are clustered at the district level. We mainly estimate model (2) through ordinary

least squares. Since the dependent variable presents a non-negligible share of zeros, we also report the

estimates of the Poisson regression associated with the baseline model.26

4.2 Threats to Identification

The main factor that cautions against a causal interpretation of the estimates of model (2) is assortative

matching, meaning that there may be a—possibly unobserved—variable that correlates with the location

where emigrants settle in the United States and the composition of patenting activity across technology

classes.

In section 2.1, we discussed that the historical and quantitative evidence suggests that, over time,

emigrants originated from increasingly affluent and urbanized areas. Suppose emigrants also settled

in comparatively more urban and affluent counties in the United States, and there was a correlation be-

tween patenting activity in specific fields and economic growth. In that case, the selection issue may bias

the OLS estimates upward. We note that the bias arises only if (i) the correlation between patenting and

the underlying confounding variable is heterogeneous across technology classes and (ii) the correlation

is the same in the US and the UK. If (i) does not hold, then the omitted confounding variable would be ab-

26In the innovation literature, it is common practice to apply a log transformation to the dependent variable. We do not follow

this practice because Chen and Roth (2022) show that average treatment effects for transformations of the dependent variable

defined in zero are arbitrarily scale-dependent. In Appendix section D.4, we present alternative specifications with multiple

transformations of the dependent variable.
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sorbed by district-by-time fixed effects. If (ii) does not hold, the selection bias would be working against

our result.

Assortative matching also arises if pre-existing differences in specialization across technology classes

predicted the counties where emigrants chose to settle. For example, suppose that emigrants from a

largely textile area, say Lancashire, were comparatively more likely to settle in counties with larger tex-

tile sectors. Then, the estimated 𝛽 of model (2) would reflect pre-existing innovation similarities between

sending and settling areas rather than capture the effect of return innovation. Evidence by Hanlon (2018)

and Ottinger (2020), among others, suggest that non-random location decisions may represent a severe

threat in this context. We attempt to quantify this issue in Appendix section D.4.2. We measure the simi-

larity of innovation portfolios between districts and counties and check whether this measure of special-

ization proximity correlates with observed bilateral migration flows. Table D.2 reports the results. We

find no significant association between innovation similarity and migration choices. This suggests that

assortative matching is a plausibly minor concern for our analysis. Moreover, in the baseline estimation

equation (2), we include district-by-technology fixed effects. Hence, for assortative matching to bias our

estimates, the underlying confounding variable would need to vary over time across district-technology

pairs.

While we present evidence against the presence of assortative matching, we ultimately cannot rule

it out. We thus develop two strategies that, we argue, ameliorate residual endogeneity concerns.

4.3 Shift-Share Instrumental Variable Strategy

We design a shift-share instrument that leverages recent advancements in the econometric literature

to deal with selection and assortative matching. Identification critically hinges on the observation that

instrument validity can be obtained from the quasi-random assignment of shocks (Borusyak et al., 2022).

We construct county-specific immigration shocks by interacting aggregate immigration flows in the US

with the gradual expansion of the railway network along the lines of Sequeira et al. (2020). These gener-

ate exogenous shocks to county-level immigration in a quasi-experimental shift-share design à la Borusyak

et al. (2022).

To construct the shocks, we predict the county-level immigrant share, which is not specific to British

immigrants, from a regression between the actual immigrant shares and an interaction between the

timing of connection to the railway network and the aggregate inflow of immigrants. Importantly, we

control for county-level unobserved time-invariant heterogeneity and several other potential confound-

ing variables at the county level.27 In our context, shocks are conditionally exogenous if the settlement

decisions of British immigrants did not influence the direction of the enlargement of the US railway net-

27In Appendix section E.2, we describe in more detail the practical computation of the immigration shocks.
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work. In other words, instrument validity requires that shocks randomly assign British emigrants across

counties. Under this assumption, the instrument breaks concerns of assortative matching. This may fail

if, for instance, immigrants settled in counties more similar to their area of origin among the counties

connected to the network in a given period. Since county-level shocks yield the overall predicted immi-

grant shares—and not those of the British only—we believe this is a relatively minor concern to rule out

by assumption. Following Borusyak et al. (2022), we show that shocks are uncorrelated with county-level

confounding variables and that the instrument does not systematically predict district-level character-

istics. Appendix Figure E.3 shows that while immigrant shares correlate with district-level observable

characteristics (Panel A), predicted immigration shares do not (Panel B). Similarly, in Appendix Figure

E.4, we confirm that while out-migration correlated with most district variables, the instrument displays

smaller and insignificant correlations with the same variables. These exercises provide evidence in favor

of the validity of our research design.

Let 𝜔 𝑗,𝑡 be the immigrant share in county 𝑗 in decade 𝑡, and let 𝜔̂ 𝑗,𝑡 be its prediction. We thus define

the instrument as �Emigrants𝑖→ 𝑗,𝑡 ≡ 𝜔̂ 𝑗,𝑡 ×
∑︁
𝑗∈ 𝐽

(
𝜔̂ 𝑗,𝑡 × Emigrants𝑖→ 𝑗,1880

)
(3)

where Emigrants𝑖→ 𝑗,1880 denotes the number of emigrants leaving district 𝑖 and settling in county 𝑗 at the

beginning of the sample period. Importantly, this exposure term is allowed to be endogenous by design.

Identification stems from the quasi-exogeneity of the shocks {𝜔̂ 𝑗,𝑡}. Given a predicted set of bilateral

flows, we construct the instrument for knowledge exposure as in (1), except that the predicted flows

replace the observed ones.

Even though we present evidence suggesting the opposite, the conditional exogeneity of the timing

of railway connection is ultimately an untestable assumption. To validate the results obtained with the

instrument (3), we construct an additional series of county-level shocks {𝜔̂ 𝑗,𝑡} that leverages a different

source of variation. Specifically, we compute “leave-out” predicted county-level immigrant shares by

interacting start-of-period immigrant shares with aggregate inflows by nationality. Importantly, we ex-

clude British immigrants when calculating these shocks. This ensures that the “leave-out” shares do not

reflect the settling decisions of the British. We describe the procedure in more detail in Appendix E.2.2.

This alternative instrument yields results that are highly consistent with the railway-based approach.

4.4 Shock Propagation Difference-in-Differences Strategy

The shift-share instrumental variable relies on identifying variation across counties that become con-

nected to the US railway network. Therefore, the associated estimates deliver a local average treatment

effect for a complying group of individuals who settle in counties that become connected to the railway

network during this period. The literature suggests, however, that it is plausible that these “frontier”
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migrants would display a relatively higher probability to undertake innovation activity, perhaps due to

entrepreneurial attitudes (Bazzi et al., 2020). Under this interpretation, the IV estimates would yield an

upper bound to the effect of overall out-migration on British innovation. In addition, because they rely

on the specific group of counties that become connected to the railway network, they do not reflect the

overall composition of US innovation across technology classes.

To provide additional causal evidence and circumvent these limitations, we devise a research design

that leverages geographically clustered innovation shocks in the United States in a triple-differences

setting. We start by observing a logical corollary of the return innovation argument. Suppose we observe

a sudden increase in the number of patents granted in some counties in some technology classes. Then,

one would expect that districts whose emigrants had settled more extensively in those counties would

display increased innovation activity in those classes. In other words, innovation shocks in the United

States should “reverberate” in the United Kingdom through pre-existing migration linkages.

We test this prediction using two sets of innovation shocks. First, as we describe in more detail

in Appendix E.3.1, we construct a set of county-technology class synthetic innovation shocks at yearly

frequency. The intuition behind these shocks is that we seek to isolate periods of unusual patenting in

a given county-technology class-year, controlling for the average volume of patents produced in that

county-class cell. We thus regress the number of patents against fixed effects to obtain the residual-

ized innovation activity. Then, we flag an innovation shock 𝜉 𝑗𝑘,𝑡 whenever the residualized number of

patents in a given county 𝑗, technology class 𝑘, and year 𝑡 is in the top 0.1% of the overall distribution.28

Appendix Table D.8 documents that shocks are relevant, as one such shock is associated with an average

of more thirty patents in the given county. Second, we leverage recent evidence by Berkes et al. (2023),

who document that the Great Influenza pandemic (1918–1919) significantly and positively affected phar-

maceutical innovation in counties that were more exposed to the pandemic. We thus claim that districts

that were comparatively more exposed to affected counties should feature increased pharmaceutical in-

novation. We provide additional details on the construction of county-level exposure to the pandemic in

Appendix E.3.2.29 We code county-level exposure to the pandemic as a dummy 𝜑 𝑗 that returns value one

if the ratio between deaths during the pandemic (1918–1919) and deaths in the preceding three years

(1915–1917) is in the top 25%, and zero otherwise.

We measure district-level exposure to the county-level shocks in terms of the emigrants that had

left the given district to settle in the given county before the period of analysis.30 Formally, we compute

28In Appendix Table E.11, we show that the results remain consistent when imposing different values to flag innovation shocks.
29Since the technology taxonomy used in this paper is different from Berkes et al. (2023), in Appendix Table D.7 we confirm that

their result holds in our data. Figure D.2 reports the associated flexible triple differences specification. Moreover, in Figure

E.6a, we confirm that the pandemic affected innovation activity only in the pharmaceutical sector.
30This part of the analysis restricts the outcome variable to 1900–1930, so we can leverage migrant flows in the preceding decade
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exposure to synthetic shocks in technology class 𝑘 as

Synthetic Shock Emigrants𝑖𝑘,𝑡 =
∑︁
𝑗∈ 𝐽

(
Emigrants𝑖→ 𝑗,1900 × 𝜉 𝑗𝑘,𝑡

)
(4)

and analogously, we define exposure to counties affected by the pandemic as

Influenza Emigrants𝑖 =
∑︁
𝑗∈ 𝐽

(
Emigrants𝑖→ 𝑗,1900 × 𝜑 𝑗

)
(5)

To avoid issues of continuous treatment described by Callaway et al. (2021), we recast each exposure

metric in terms of a dummy variable that returns value one if the associated continuous measure is in

the top 25%, and zero otherwise.31

To estimate the effect of US synthetic shocks on UK innovation activity, we estimate the following

triple differences specification:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑘×𝑡 + 𝛼𝑖×𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ × I

[
𝐷𝑖𝑘,𝑡 = ℎ

]
+ 𝜀𝑖𝑘,𝑡 (6)

where𝛼𝑖×𝑘 ,𝛼𝑘×𝑡 , and𝛼𝑖×𝑡 denote, respectively, district-by-technology class, technology class-by-year, and

district-by-year fixed effects.32 The term
(
𝐷𝑖𝑘,𝑡 ≡ 𝑡 − I

[
Synthetic Shock Emigrants𝑖𝑘,𝑡

] )
denotes the num-

ber of years since the district-technology class 𝑖𝑘 was exposed to a synthetic innovation shock 𝜉. The

roll-out of the treatment is staggered across units. Different district-class pairs may be exposed to the

exposure treatment at different points in time.33 Goodman-Bacon (2021) shows that the standard two-

way fixed effects estimator shown in (6) fails to estimate the average treatment effect when treatment

effects are heterogeneous, either over time or across groups. Several estimators have been proposed to

deal with this difficulty. In the main results, we report estimates obtained using the imputation proce-

dure presented in Borusyak et al. (2021). Other estimators yield qualitatively similar results, as shown

in Appendix Figure E.7.

We follow a similar approach to estimate the effect of US exposure to the Great Influenza pandemic

on UK innovation. In particular, the model is entirely similar to (6), except that the treatment variable is

defined as
(
𝐷𝑖𝑘,𝑡 ≡ 𝑡 − 𝐼

[
Influenza Emigrants𝑖

] )
as it codes the number of years since the influenza, and

it is interacted with a dummy variable returning value one for the pharmaceutical technology class, and

(1890–1899) to construct fixed exposure shares.
31In Appendix Table E.11 we consider alternative thresholds to code the exposure variable (4). In Appendix Table E.12, we report

the results using the continuous measure (5).
32When we estimate regression (6) using variation in exposure to the pandemic shock, we normalize the dependent variable by

the average number of patents granted before the pandemic to ensure that the estimated coefficients’ size are comparable.
33Notice that the treatment is also potentially repeated, for the same unit can be treated multiple times. This is, however, not

the case in the baseline case, where we define synthetic shocks in the top 0.1% of the overall residualized innovation shock

distribution.
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zero otherwise.34

The primary estimation strategy in this setting is thus a triple difference estimator (Olden and Møen,

2022). A causal interpretation of the resulting estimates requires that the difference between the within-

group differences are not statistically different from zero before the treatment. Several papers highlight

that, compared to the standard difference-in-differences estimator, the parallel trends assumption in

this setting is relatively weak because it only requires that no contemporaneous shock affects the rela-

tive outcome of the treatment and the control group (Gruber, 1994). Throughout the paper, we present

flexible triple difference estimates to provide evidence supporting the parallel trends assumption.

5 Empirical Results

In this section, we present the main return innovation result. Then, we document that shocks to US inno-

vation diffuse into the UK through migration ties. We interpret these results as evidence that migration

flows contribute to the diffusion of innovative knowledge to countries sending migrants.

5.1 Exposure to US Innovation Shapes Innovation in the UK

The primary finding of this paper is that exposure to foreign technology through migration ties shapes

the dynamics and direction of innovation in the emigrants’ country of origin.35 We label this novel find-

ing “return innovation”. We first estimate regression (2) through a simple OLS linear probability model

to document it. We report the results in columns (1–3) of panel A of Table 2. There is a positive, signifi-

cant, and quantitatively large correlation between the baseline measure of exposure to foreign knowl-

edge and the number of patents at the district-technology class level. Moreover, the correlation persists

over time, as the estimates remain statistically significant after two decades. In columns (1–3) of panel

B we repeat this exercise, but we normalize the number of patents by the district-level population at the

beginning of the sample (1880). We confirm the positive association between knowledge exposure and

per-capita patents. Importantly, all regressions include district-by-decade fixed effects to account for un-

observed time-varying heterogeneity at the district level. Moreover, we control for district-by-technology

class fixed effects to partial out spurious variation arising from initial district-level specialization across

classes.

As discussed in section 4.2, at least two factors hinder a causal interpretation of the estimates pre-

34This specification focuses on the ATE on pharmaceuticals compared to other technology classes. In Appendix Table E.12, we

report the double differences estimates associated with model (6). Then, in Figure E.6b, we show that, as in the United States,

the influenza had a major effect on pharmaceutical innovation only.
35A recent literature produced compelling evidence that exposure to innovation is a key determinant of subsequent innovation

activity (Akcigit et al., 2018; Bell et al., 2019). Our results can thus be interpreted as additional new evidence in favor of this

thesis.
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sented in panel A. First, out-migration is not random across districts. Second, there may be some latent

determinant of the settlement location decisions of emigrants that correlates with innovation activity in

their origin areas. To ensure that our estimates do not reflect spurious correlation arising from omitted

variable bias issues, we estimate model (2) using the instrument (E.6). In columns (4–6) of panels A and

B, we report the reduced-form association between the instrument and the dependent variable. Figure 3

visually compares the OLS and the reduced-form IV regressions. We confirm the positive and statistically

significant effect of knowledge exposure on innovation. The effect persists until one decade, as opposed

to two from the OLS estimates.36 Columns (7–9) report the two-stage least-squares (TSLS) estimation

results. First, the instrument is relevant.37 Second, the TSLS estimates confirm knowledge exposure’s

positive, large, and statistically significant effect on innovation. The magnitude of the TSLS estimates is

roughly similar to the OLS, although the latter appears to be slightly upward biased. The OLS estimates

possibly reflect the upward bias introduced by assortative matching across district-county pairs.

The evidence in Table 2 is at the district-technology level. To explore the heterogeneity of the re-

turn innovation effect across industries, however, we estimate model (2) at the district level separately

for each technology class. We report the resulting reduced-form coefficients of the knowledge exposure

instrument—one for each regression—in Figure 4. We estimate the largest treatment effects for indus-

tries like electricity and chemistry that were at the forefront of the Second Industrial Revolution (e.g.,

Mokyr, 1998). We employ the UK-revealed comparative advantage to measure the relative sector-level

innovation specialization.38 We find that the return innovation effect is larger in sectors where the UK

retained an advantage at the beginning of the period (the 1880s). Rather than igniting the emergence of

entirely new sectors, our results suggest that exposure to US knowledge through migration ties nurtured

already-existing industries.

The setting of this study allows for gauging the persistence of the association between exposure to

36Bilateral migration flows are known to be highly persistent over time—a phenomenon known as “chain migration”. This would

inflate the OLS association between lagged knowledge exposure and innovation. At the same time, this would explain why the

associated TSLS estimates are not significant. The instrument, in fact, effectively breaks the persistence of migratory flows

using plausibly exogenous county-level immigration shocks.
37We report the complete first-stage estimates in Appendix Table E.7. The instruments are always relevant and capture a sub-

stantial share of the variation of the endogenous variables.
38In the international trade literature, the revealed comparative advantage is a widely-employed metric that hinges on the ob-

servation that a country’s comparative advantage is revealed by the country’s relative exports (Balassa, 1965). In our setting,

we define the revealed comparative advantage as

RCA𝑖𝑘 ≡ Patents𝑖𝑘/
∑
𝑘′∈K Patents𝑖𝑘′∑

𝑖′∈I Patents𝑖′𝑘
/ ∑

𝑖′∈I,𝑘′∈K Patents𝑖′𝑘′

where 𝑖 and 𝑘 denote countries and sectors within sets I and K . Specifically, I = {UK,US}. Then, the UK is relatively more

specialized in sectors with RCAUK,𝑘 above one.
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foreign knowledge and innovation.39 In Appendix Figure D.3, we report the coefficients of a regression

between the number of patents and an interaction term between knowledge exposure in the period

1900–1930 and biennial time dummies from 1940 to 2014. The estimates suggest that the positive effect of

knowledge exposure on innovation persists for almost four decades, albeit the magnitude decreases over

time. Starting in the mid-1970s, the association gradually becomes small and statistically insignificant. In

Appendix Table D.9, we repeat the exercise by technology class and find consistent results across sectors.

Migration ties thus generate enduring knowledge flows that shape innovation activity over the long run.

The analysis presented thus far focuses on how out-migration shaped the direction of innovation.40 A

natural question is, however, whether it also impacted the volume of patents. Our data are not especially

well-suited to answer this question because we lack disaggregated data on outright emigration. Never-

theless, if emigration to countries other than the United States correlated with US emigration, we can

present some suggestive evidence. In Table D.6, we estimate the effect of out-migration on innovation,

measured as the number of patents granted. The OLS and TSLS estimates show that out-migration has a

negative short-term impact on innovation, but this reverses in the medium run (after one decade). Our

findings thus appear to reconcile evidence of “brain drain,” which views out-migration as a depletion of

human capital that hampers innovation, with “brain gain” arguments suggesting that emigrants may be

conducive to economic growth via, for instance, monetary remittances (Docquier and Rapoport, 2012).

The results suggest that the former hypothesis is predominant in the short-run, while the brain-gain

perspective materializes in the medium-to-long term. The effect of out-migration on the volume of inno-

vation has been the focus of many of the existing studies (Agrawal et al., 2011; Andersson et al., 2022).

This paper, instead, provides evidence that emigration is a fundamental driver of the direction of inno-

vation.41 From this perspective, our results thus inform the recent literature studying the determinants

of the direction of innovation (Bell et al., 2019; Einiö et al., 2022).

We perform several robustness exercises to gauge the robustness of our results. These are reported

in the Appendix and discussed in section E.1. First, we consider alternative dependent variable transfor-

mations in Table E.1. Second, Table E.2 reports the results using five different definitions of knowledge

exposure that hold fixed various margins of variation. The baseline specification of model (2) includes

district-by-decade and technology class-by-decade fixed effects. In Table E.3, we show that the results are

robust to alternative, demanding specifications. The standard errors are clustered at the district level in

the baseline specification. In Figure E.1, we adopt various estimators and confirm that they all preserve

39We discuss the technical details of the long-run analysis in Appendix section D.3.
40Appendix section D.4.1 explores this aspect in more detail and provides the technical details of the analysis.
41Our results resonate with evidence by Fackler et al. (2020). While their study essentially leverages cross-country variation in

emigration destinations, our analysis is based on within-country disaggregated data on the origin and destination of migrants.

This allows us to credibly estimate the causal effect of out-migration and investigate possible underlying mechanisms.
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the statistical significance of the main results. Another concern is that the return innovation effect con-

centrates on low-quality innovation and thus bears little relevance in terms of aggregate productivity

growth. In Table E.4 we thus report the results of the baseline and instrumental variable regressions,

accounting for patent “quality”.42 The results confirm that the number of high-quality patents increases

in districts exposed to US knowledge. In fact, the magnitudes are larger than using the raw patent count.

This may indicate that the return innovation effect is more intense for marginally more valuable patents.

Analogously, in Table E.5 we compute knowledge exposure weighting US patents by their quality using

different thresholds and definitions. The results qualitatively confirm the baseline estimates. We do not

have information on the actual adoption of technology by the firms. However, in Table E.6, we restrict

the outcome variable to include only patents that list at least one firm as an assignee.43 These plausibly

reflect actual economic activity carried out by British firms. Here, too, the results remain qualitatively

similar to the baseline estimates. The instrument used in Table 2 leverages variation in the connection

timing to the railway network to randomize immigration across counties. In Table E.8, we report the

results using an alternative “leave-out” instrument, described in section E.2. Importantly, we can also

use both instruments simultaneously and provide over-identification tests. In Table E.9, we confirm that

the leave-out instrument results are robust to various alternative definitions of the county-level shocks.

5.2 Innovation Shocks in the US Diffuse to the UK

The return innovation result indicates that migration ties shape the direction of innovation in the ori-

gin areas of emigrants. We claim that this finding implies that fluctuations in patenting activity in the

United States would reverberate in the United Kingdom through migration linkages. We estimate model

(6) using two different sources of such fluctuations—which we label innovation shocks—to test this hy-

pothesis.

Table 3 reports the results of this exercise. Columns (1–4) refer to the synthetic shocks series we

construct by residualizing the observed patenting activity against fixed effects and flagging large in-

creases in the resulting series as “innovation shocks”. As a preliminary robustness test, we report the

full-sample estimate in column (1), while columns (2–4) exclude districts in the top three areas in terms

of patents granted. We estimate a positive, large, and statistically significant effect of US synthetic in-

novation shocks on innovation activity in the UK. We estimate an average of 0.4 patents per year in the

treated technology class after the shock in exposed districts. This is a quantitatively sizable effect since

42Following Kelly et al. (2021), we define a text-based measure of quality which flags as influential those patents that introduce

words that did not appear before they were published, and become used thereafter. Because we have full texts for the period

1880–1899 and abstracts only between 1900 and 1939, in this exercise we restrict the sample period to the latter years.
43Unfortunately, data on firm assignees is only available for the sub-sample 1870–1900, when we have the full text of the patent

specifications form which this information is extracted.
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the average number of patents per district-class pair is 1.3. Moreover, the relative size of the effect re-

mains consistent throughout the regression samples. Next, we explore heterogeneous treatment effects

over time in Figure 5a. Reassuringly, the figure provides evidence that supports the parallel trends as-

sumption. The effect of the innovation shock is the largest and most significant after two years since the

shock initially manifested in the United States. This time lag seems plausible, especially since our data

shows an average of 1.1 years delay between the application and issue date at the UK patent office. The

effect persists up until six years following the synthetic shock. We estimate the effect of synthetic shocks

sector by sector in the appendix Figure E.5. As in 4, we find the largest treatment effect for electricity.

Next, we investigate how exposure to the Great Influenza pandemic across US counties impacted

UK innovation. The logic behind this exercise is that exposure to the pandemic fostered innovation

in the pharmaceutical sector (see Table D.7 and Berkes et al., 2023). We thus expect districts whose

emigrants had settled in counties more exposed to the pandemic to display higher patenting rates in

pharmaceuticals. We report our findings in columns (5–8) of Table 3. We estimate the pandemic shock’s

effect on British innovation to be positive and sizable. On average, two patents per year are granted in

the pharmaceutical sector in districts more exposed to counties severely affected by the influenza. We

estimate the associated dynamic treatment effects in Figure 5b. We find only one marginally significant

and very small coefficient in the pre-treatment period. By comparison, the post-treatment coefficients

are large and highly significant. The effect of the pandemic materialized six-seven years after the shock

in the United States. As noted before, this delay is partly due to the shift between patent application

and issue by the patent office, except that we now have to compound delays at the US and UK offices.

Moreover, the effect of the pandemic shock on US innovation in pharmaceuticals was not immediate,

as shown in Appendix Figure D.2. Taken together, it is plausible that the propagation of the innovation

shock into the UK is observed with some delay. We estimate statistically significant treatment effect

coefficients for more than a decade thereafter.

The pandemic shock only impacted innovation in pharmaceuticals in the US (Figure E.6a). We thus

expect to retrieve a similar effect in Britain. Figure E.6b shows that, although the point estimates are

not as sharp as in the US case, the pharmaceutical sector is the one that benefits the most from the

influenza shock. The point estimate for pharmaceuticals is nearly three times larger than the second-

largest estimate. The estimated effect in some sectors may be negative because of crowding-out out of

those fields into pharmaceuticals, although we cannot entirely disentangle the underlying reason. We

interpret this exercise as a falsification check: Figure E.6 provides convincing evidence that the pandemic

shock affected the same sector in the US and the UK.

We assess the robustness of these results through several robustness checks. First, we consider al-

ternative thresholds to (i) flag synthetic shocks and (ii) flag district exposure to synthetic shocks. In

28



Table E.11, we estimate larger treatment effects for smaller thresholds. This is reasonable since smaller

thresholds impute, on average, larger innovation shocks. The synthetic shock triple differences model

is a staggered design since shocks generally occur in different periods across technology classes and dis-

tricts. The baseline estimates are obtained from the imputation estimator developed by Borusyak et al.

(2021). In Figure E.7, the estimated treatment effect remains consistent across various estimators. In

particular, the one developed by De Chaisemartin and D’Haultfœuille (2022) allows repeated treatments

and yields consistent results. In Table E.12, we report several specifications to gauge the robustness of

the pandemic shock results. First, in columns (1–2), we report the double differences estimates that com-

pare pharmaceutical innovation across districts by exposure to counties affected by the pandemic. Then,

in columns (3–7), we report various triple differences specifications that exclude districts in areas with

very high patenting activity. The results remain consistent throughout.

5.3 Technology Transfer and Spillovers: A Text-Based Approach

It is natural, at this point, to ask to what extent the return innovation effect manifests because the same

patents that are granted in the United States are, at some point, issued in Britain. In other words, is the

return innovation effect about UK areas with higher exposure to US knowledge “copying” US-developed

innovation?

To quantify the extent of copying and, on the other hand, the spillovers in terms of “original” inno-

vation that would be generated by migrant linkages, we develop two text-based similarity measures.44

First, we compute the backward similarity between patents granted in the UK and previous patents

granted in the US. Leveraging textual information contained in patent titles, this approach allows us to

measure whether patents produced in areas with larger exposure to US knowledge become more similar

to US inventions. Second, we compute a measure of patent “originality” by comparing patents granted

in the UK to previous and subsequent US patents. Specifically, we deem a given patent as more innova-

tive if it is more similar to subsequent US patents relative to previous ones. This approach mirrors the

methodology of Kelly et al. (2021). Both indices are computed at the patent level and aggregated up at

the district-technology class level at a decade frequency.

In Figure 6, we report the effect of exposure to US synthetic innovation shocks on the similarity be-

tween patents produced in the UK and those issued in the US. In Panel 6a, we estimate a positive and

significant effect of exposure to US knowledge on the backward similarity between UK and US patents.

This suggests that, to some extent, knowledge flows generated by migration ties stimulate emulation and

technology transfer between the United States and Britain. In Panel 6b, however, we estimate the same

model using the “originality” of UK patents as the dependent variable. Here, too, we find that areas with

44In Appendix section B.3, we present the analytical derivation of the similarity metrics that we abridge from Kelly et al. (2021).
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more intense exposure to foreign innovation produced more innovative patents (compared to previous

US innovations). These results thus suggest that the return innovation effect conflates two distinct mar-

gins through which exposure to foreign knowledge affects the production of innovation. First, migrant

linkages fostered the technology transfer of already-existing inventions in the UK. Second, they also pro-

pelled the development of novel, original inventions. Interestingly, we estimate that a synthetic shock

triggers a sudden increase in the backward similarity of innovation, while the effect on original patents

manifests more slowly.

In Appendix Table E.14, we tabulate the associated estimates and report the results for the Great

Influenza pandemic shock as well. We confirm that following an innovation shock in the US—either

a synthetic one or the Great Influenza pandemic—the similarity between UK and US patents increases

(Panel A). At the same time, areas more exposed to the shock start producing more original patents (Panel

B).

In Appendix Table E.13 we report the OLS and instrumental variable estimates of regression (2),

which confirm the baseline results obtained using the triple differences estimator. We gauge the robust-

ness of these results using three alternative measures of similarity, all displayed in Appendix Table E.10.

First, we use the “raw” similarity measure between titles, which does not take the log of the cosine simi-

larity between patent titles (columns 1–3). Second, we net out the year and technology fixed effects from

the patent-level originality and backward similarity measures to ensure that our estimates do not con-

flate time-varying terminology and fashion trends (columns 4–6). Finally, while in the baseline analysis,

we compute the similarity metrics over a ten-year window around each patent, in columns (7–9), we

restrict it to five years. The results remain qualitatively unchanged throughout.

6 Potential Mechanisms and Discussion

Several concurrent, not necessarily mutually exclusive mechanisms can explain the return innovation

result. In this section, we present our analysis to disentangle some. First, we establish whether return

innovation is solely a consequence of return migration. Then, we discuss some complementary and

possibly quantitatively more substantial channels.

6.1 Is Return Innovation Return Migration?

Return migration is a primary candidate to explain our findings through two channels. First, return

migrants may engage in innovation activities in the fields they were exposed to abroad. Second, return

migrants may facilitate access to US knowledge without directly undertaking innovation activities. The

literature does not offer conclusive evidence on the effect of return migration on innovation. On the one

hand, several studies estimate modest effects for recruiting programs of high-skilled nationals working

abroad (Ash et al., 2022; Shi et al., 2023). On the other, Giorcelli (2019) shows, although from a different
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perspective, that those exposed to (managerial) foreign knowledge change their behavior once back in

their origin country.45 In this section, we quantify the relative importance of return migration in gener-

ating return innovation.

The baseline linked sample of British emigrants traces them back to the UK census before they migrated.

To measure return migration, we instead link them to UK censuses completed after they had migrated to

the US. Then, we aggregate return migration flows at the district-by-county level and at decade frequency

and compute a measure of “return knowledge exposure” which is analogous to (1):

Return Knowledge Exposure𝑖𝑘,𝑡 ≡
∑︁
𝑗∈ 𝐽

(
Patents 𝑗𝑘,𝑡
Patents 𝑗,𝑡

× Return Migrants 𝑗→𝑖,𝑡

)
(7)

where Return Migrants 𝑗→𝑖,𝑡 is the number of migrants that return from county 𝑗 to district 𝑖 in decade 𝑡.

Because UK censuses are available only until 1911, return migration data span the period 1870–1910.

As a first step, we estimate model (2) controlling for return knowledge exposure. Table 4 reports

the results: in columns (1–3), we present specifications with various levels of fixed effects; columns (4)

and (5) display the coefficients of lagged values of the independent variables; in column (6) we report the

full lag model. Throughout the specifications, the coefficients of baseline and return knowledge exposure

remain comparable in size—by looking at the respective standardized beta coefficients—and statistically

significant. These results suggest that return migration is an important driver of return innovation. In

our data, approximately 30% emigrants return, and these account for approximately 50% of the total

return innovation effect. At the same time, however, a substantial proportion of return innovation is not

explained by return migration.

Absent physical return, in the rest of the paper, we provide evidence of two additional mechanisms

that underlie the return innovation effect. First, we focus on interactions between the emigrants and

local communities in Britain. Second, we explore how migration ties facilitate cross-country market

integration, thereby promoting knowledge flows.

6.2 Return Innovation Through Interactions

In this section, we explore if and, in case, how emigrants interact with local communities who remained

in Britain. We distinguish between two cases. On the one hand, interactions could require physical re-

turn. On the other, emigrants may exchange information while abroad. When studying the interactions

between emigrants and stayers, one needs to delimit the set of stayers with whom emigrants could plau-

sibly interact. We focus on two factors that could promote social interactions between the emigrants and

their communities of origin: family ties and pre-migration geographical proximity (neighbors).

45Choudhury (2016) shows that R&D firms with returnee managers are disproportionately more likely to file patents in the United

States. Bahar et al. (2022b) show that return migration can influence trade.
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6.2.1 Interactions Between the Emigrants and their Family

Our data do not contain exhaustive information on the families of emigrants. At best, we know those

living in the same household. This would be an exceedingly restrictive definition because, in most cases,

it would exclude brothers or parents. We thus adopt a less conservative approach. In particular, we

assume that it is likely that individuals with the same surname who live in geographical proximity—

in the same UK county—are relatives. This assumption is reasonable as long as surnames are not too

common: in this analysis, we thus the top 5% most common surnames. Results are robust to alternative

sample cuts.

We implement a triple-differences estimation. The outcome variable is the total number of patents

granted to inventors with a given surname who are recorded living in a given county in the UK. The

treatment leverages variation in the surname of US emigrants by county. Under the previous assumption,

this model quantifies how the emigration of family members impacts the patenting activity of those who

remain in the UK. Formally, it is

Patents𝑠𝑐,𝑡 = 𝛼𝑠×𝑐 + 𝛼𝑐×𝑡 + 𝛼𝑠×𝑡 + 𝛽 × US Emigrant𝑠𝑐,𝑡 + 𝜀𝑠𝑐,𝑡 (8)

where 𝑠, 𝑐, and 𝑡 denote, respectively, surnames, counties, and years. The treatment (US Emigrant𝑠𝑐,𝑡)

is a variable equal to one after an individual with surname 𝑠 from county 𝑐 emigrates to the US, and

zero otherwise. Therefore, under the standard parallel trends assumption, 𝛽 estimates the impact of

emigration on patenting activity carried by the relatives of the emigrant. To deal with the sharp left

skewness of the outcome variable, for each estimate, we report an analogous model that features as the

outcome variable a categorical indicator that returns a value of one if the number of patents is strictly

positive and zero otherwise.46

Columns (1) and (5) of Table 5 report the baseline estimates. Emigration to the US has a positive effect

on patenting activity by the relatives of emigrants who remain in the UK. The effect is quantitatively

sizable. In Appendix figure E.8 we report the associated flexible triple differences model. The estimates

provide evidence in support of the parallel trends assumption. Moreover, they show that it takes, on

average, ten years before a British emigrant to the US contributes to the innovation activity of his family

in the UK. This delayed effect is plausible inasmuch as it would take time for emigrants to settle in the

US and be exposed to technology that they could diffuse back into the UK.

In the second part of the analysis, we distinguish between emigrants who return from those who

do not. Emigrants could interact with their families upon returning, but they could also maintain ties

while abroad. In columns (2) and (6), we thus restrict to emigrants that, at some point, return to the UK.

In columns (3) and (7), by contrast, the treatment includes only those that never return. The impact of

46The results remain qualitatively unchanged estimating model (8) as a Poisson regression.
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return emigrants is four to five times as large as that of those who never return. This difference suggests

that return migration is, as we argued in the previous section, a major driver of return innovation. At the

same time, however, emigrants promote innovation by their relatives even if they never return. When

we compare the two coefficients in columns (4) and (8), we confirm that both return and non-return em-

igration contribute to innovation in the UK. The relative magnitudes remain unaltered. Because return

migration only accounts for approximately 30% of the overall emigration, this analysis suggests that, in

quantitative terms, interactions between stayers and emigrants who never return to the UK account for

approximately half of the overall return innovation effect.

6.2.2 Interactions Between the Emigrants and their Neighborhood

In this section, we interpret geographical proximity between emigrants and stayers as an alternative

proxy for local social networks. The rationale is that, before leaving the UK, emigrants plausibly main-

tained social ties to those who lived in their neighborhood. We thus hypothesize that stayers could in-

teract with their former neighbors who migrated to the US. Here, too, we further distinguish emigrants

who never return to quantify the relative importance of physical return migration on interactions with

origin communities.

We leverage the granular nature of our data and perform an individual-level analysis. First, we

extract all men aged between 18 and 50 in 1900 that do not emigrate from the 1911 census. We then

create a yearly balanced panel dataset that reports the number of patents obtained by each individual

between 1900 and 1920. To do so, we leverage the linked inventor-census data described in Appendix

A.3. Next, each individual is geo-referenced to precise coordinates as described in Appendix A.2. We

complement this with information on the geographical proximity between these “stayers” and migrants.

More specifically, we define a dummy variable (Neighborhood Migrant𝑘𝑝,𝑡) that returns value one in all

periods after the first time at least one individual living within 𝑘 meters from individual 𝑝migrates to the

US, and zero otherwise. In the baseline analysis, we consider 𝑘 = 0, meaning that we only consider em-

igrants in the same street as the observed individuals, and recast (Neighborhood Migrant100𝑝,𝑡 ) as simply

(Neighborhood Migrant𝑝,𝑡) for brevity. We label this variable an indicator of “neighborhood migration”.

To estimate the effect of neighborhood migration on the probability of patenting, we thus estimate the
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following double difference regression:47

Patents𝑝,𝑡 = 𝛼𝑝 + 𝛼𝑡 + 𝛽 × Neighborhood Migrant𝑝,𝑡 + 𝜀𝑝,𝑡 (9)

where 𝑝 and 𝑡 denote, respectively, individuals and years, and 𝛼𝑝 and 𝛼𝑡 are the associated fixed effects.

The term 𝛽 yields, under a standard parallel trends assumption, the estimated causal effect of neighbor-

hood migration on innovation.

The logic beneath equation (9) builds on Bell et al. (2019), who document the importance of geo-

graphical proximity to inventors as a driver of subsequent innovation activity. A positive and significant

estimate of 𝛽 would be evidence that emigrants promote the innovation activity of their neighbors. Then,

we define a (Non-Return Neighborhood Migrant𝑘𝑝𝑡) dummy entirely analogous to the previous treatment,

except that we condition the neighborhood emigrant to not return to the UK. In this case, a positive esti-

mate of 𝛽 would suggest that neighbors benefit from interactions with the emigrants even if those never

return.

We report the estimates of equation (9) in Table 6. The dependent variable is the yearly number of

patents. In columns (1–4), the sample includes individuals from all districts; in columns (5–7), we exclude

individuals in the top three-producing patents areas (London, Lancashire, and the South-West). In panel

A, the treatment is activated by any US neighborhood emigrant. In panel B, we restrict to neighborhood

emigrants that never return in the sample period. We estimate a positive effect of neighborhood emigra-

tion on innovation by non-migrants. The effects hold in the baseline specification (columns 1 and 5), as

well as including parish-by-time fixed effects (columns 2 and 6) and applying coarsened exact matching

(CEM, columns 3 and 4).48 Importantly, the estimated coefficient remains if we restrict the sample to

exclude all non-inventors, thus reducing the sample size considerably (columns 4 and 8). Panels A and

B show that overall and non-return neighborhood migration has a positive statistically significant effect

on the probability of inventing regardless of the dependent variable, the fixed effects, and the match-

ing scheme. In Figure E.10, we report the associated flexible difference-in-differences estimates, which

indicate the absence of statistically significant pre-trends. In Appendix Table D.10 we explore the hetero-

47To avoid an excessive computational burden, we estimate model (9) on a 10% random sample of the population. Moreover, the

model is a staggered difference-in-differences design with (potentially) repeated treatments. We thus estimate regression (9)

using the estimator proposed by Borusyak et al. (2021). In Appendix Figure E.9 we show that the estimated coefficient remains

stable using several different staggered difference-in-differences estimators. In Appendix Figure E.15, we show that results

hold if the neighborhood-migrant treatment is activated whenever emigrants within 100 meters from the individual in the

sample migrate.
48Parishes are very small geographical units with a population of approximately 2,500. Coarsened exact matching weights are

calculated to balance individuals in terms of age, parish of residence, and occupation. Appendix Figure E.11 reports the corre-

lation between treatment status and pre-treatment individual-level observable characteristics for the baseline sample (panel

A) and the CEM weighted sample (panel B).
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geneous response to neighborhood out-migration across the age and occupation of the stayer individual.

In particular, we find that the gains are larger for relatively young individuals (column 1) and accrue to

those employed in skilled occupations (columns 2–4).

Evidence presented in Table 6 provides additional evidence that emigrants promote innovation in

the communities they come from. Those who never migrate but who were in close geographical proxim-

ity with the emigrants before they left, a proxy for local social networks, benefit from interactions with

the emigrants. This channel operates even if the former neighbor never returns. These results high-

light the importance of cross-country interactions between the emigrant population and their origin

communities. Our findings confirm experimental evidence from developing countries linking technol-

ogy diffusion with network interactions (e.g. Bandiera and Rasul, 2006; Conley and Udry, 2010; Beaman

et al., 2021). In the rest of the paper, we investigate more aggregate effects of migration ties on innovation

activity.

6.3 Return Innovation Through Economic Integration

In this section, we explore whether migration ties promote the cross-border diffusion of innovation ir-

respective of direct interactions between the emigrants and their origin communities. Building on pre-

vious literature, we will argue that migration ties foster the integration between markets. This, in turn,

facilitates the diffusion of information and thus fosters knowledge flows.

6.3.1 The Transatlantic Telegraph Increased Innovation In Emigration Districts

We exploit one historically relevant event to provide evidence that migration ties foster cross-border

economic integration: the first transatlantic telegraphic cable that connected the US and UK domestic

networks (1866). The telegraph represented a major revolution in communication technology that ush-

ered unprecedented market integration (Steinwender, 2018). Before 1866, steam mail was the cheapest

and fastest way to communicate between the UK and the US. It took seven to fifteen days to transmit

information in this way. This delay was reduced to one day overnight between June 27 and 28, 1866. The

connection timing was unanticipated and exogenous (Steinwender, 2018).49

We claim that if migration ties fostered cross-border market integration between the British and the

American market, then districts with relatively higher US emigration rates would be more exposed to the

telegraph shock. Under this interpretation, we thus expect that districts with higher US emigration rates

after 1866 would display (i) increased innovation activity in districts with more US emigrants and (ii)

increased innovation activity in the fields emigrants were exposed to in the US. To test these hypotheses,

49The project for a transatlantic telegraphic cable had been underway for a long time before 1866. Previous attempts in 1857,

1858, and 1865 all failed due to logistic and technical challenges. The 1866 attempt was thus one among many, and its success

had not been anticipated.
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we estimate the following difference-in-differences models:

Patents𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ

[
US Emigrants𝑖 × I(𝑡 − 1866 = ℎ)

]
+ 𝜀𝑖,𝑡 (10a)

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ

[
Knowledge Exposure𝑖𝑘 × I(𝑡 − 1866 = ℎ)

]
+ 𝜀𝑖𝑘,𝑡 (10b)

where 𝑖, 𝑘, and 𝑡 denote a district, technology class, and yea, respectively. The term (US Emigrants𝑖)

and (Knowledge Exposure𝑖𝑘) code the number of US emigrants and exposure to US knowledge.50 Lastly,

the variable I(𝑡 − 1866 = ℎ) denotes the number of years since the transatlantic cable was laid down. In

equation (10a), the treatment coefficients {𝛽ℎ} quantify the effect of the transatlantic cable by comparing

districts by the number of US emigrants; in equation (10b), we also leverage variation across sectors and

exposure to US innovation.

We report the static versions that conflate pre- and post-treatment years in two periods in columns

(1) and (4) of Table 7. We estimate a positive and significant effect of the transatlantic telegraph on inno-

vation. To provide more convincing evidence on the plausibility of this result, we expect the transatlantic

cable to affect innovation only in districts that were connected to the British domestic network.51 We thus

reconstruct the entire telegraph network before the introduction of the transatlantic cable. The exact lo-

cation of each station is displayed in Appendix Figure A.4. We refer to districts with at least one station as

“connected”. In columns (2) and (5), we show the estimated effect of the telegraph on connected districts.

By comparison, columns (3) and (6) report the estimates for non-connected districts. The results of this

exercise are sharp. We estimate a positive effect of the transatlantic cable only for districts connected to

the domestic UK network, as expected. We fail to detect any significant effect on non-connected districts.

Because the location of telegraph stations was not random, one may argue that this exercise only

reflects pre-existing differences between connected and non-connected districts. However, identification

in this setting requires that patenting in connected and unconnected districts was on the same trend

before the introduction of the telegraph and that it would not have differed had the cable not been laid

down. In Figure 7, we thus report the flexible double-differences estimates of model (10a), which we

estimate separately on connected and unconnected districts. We find that connected and unconnected

districts were on the same trend before 1866. We estimate positive and significant treatment effects only

for the former and after 1866, whereas the patenting in the latter does not respond to the shock. In 1873

and 1874, the second and third cables became operational. Our estimates suggest positive treatment

50The cable was laid down in 1866. Our migration data started in 1870. To construct district-level emigration, we can only use

emigrants from 1870–1875. This would be problematic if the telegraph fostered out-migration, which, by available historical

accounts, was not the case.
51We do not claim that there were no cross-district spillover effects even if districts were not connected to the domestic UK

network. We nonetheless believe the effect on connected districts would arguably be more significant.
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effects for those.

Building on Steinwender (2018), we interpret these results as evidence that the increased economic

integration between the UK and the US ushered by the transatlantic telegraph was relatively more in-

tense in districts that had previous migration ties with the US. Thus, migration ties facilitate market

integration and, indirectly, the diffusion of knowledge across countries. This is in line with evidence

by Aleksynska and Peri (2014), who document that migrants promote trade between their origin and

their destination countries. We provide additional evidence in this direction in section 6.3.3 and discuss

potential additional mechanisms in section 6.4.

6.3.2 Newspaper Mentions of United States Topics in Emigration Districts

Thus far, we have restricted the focus of the analysis to information flows that pertain to innovative

knowledge (patents). This section provides evidence that migration ties between the UK and the US gen-

erated more general-purpose information flows that did not directly concern innovation. We exploit the

vast British Newspaper Archive that contains the digitized contents of thousands of historical British

newspapers (for a detailed description of the data, see Appendix section 3.3.2 and Beach and Hanlon,

2022). Ideally, we would like to measure the intensity of US-related information flows into the United

Kingdom. We tackle the absence of direct hard data by measuring how frequently US-related news ap-

peared in historical newspapers.

We estimate three sets of regressions:

US Mentions𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽1 × US Emigrants𝑖,𝑡 + 𝜀𝑖,𝑡 (11a)

US State Mentions𝑖𝑠,𝑡 = 𝛼𝑖 + 𝛼𝑠×𝑡 + 𝛽2 × US Emigrants𝑖→𝑠,𝑡 + 𝜀𝑖𝑠,𝑡 (11b)

US County Mentions𝑖 𝑗,𝑡 = 𝛼𝑖 + 𝛼 𝑗×𝑡 + 𝛽3 × US Emigrants𝑖→ 𝑗,𝑡 + 𝜀𝑖 𝑗,𝑡 (11c)

where 𝑖, 𝑗, 𝑠, and 𝑡 denote a UK district, a US county, a US state, and a decade, respectively. Regression

(11a) is run at the district level and leverages the variation of the overall US emigration rate; in regres-

sions (11b) (resp. (11c)), instead, we look at district-by-state (resp. district-by-county) migration flows. We

estimate regressions (11) using actual out-migration and the shift-share instrument described in section

4.3.

Table 8 reports the results. Panels A, B, and C respectively display the estimated 𝛽𝑖 coefficients

of models (11a), (11b), and (11c). In columns (1–3), we report the correlation between measured out-

migration flows and newspaper coverage; columns (4–5) report the OLS reduced-form association with

the instrument; columns (7–9) display the two-stage least-square estimates. In columns (3), (6), and (9),

we restrict the sample to districts with at least one newspaper. We find a strong and positive effect of

out-migration on newspaper coverage of general-interest US-related news. Importantly, we always con-
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trol for time-varying confounding factors at the level of the receiving place, whether it be the country,

single states, or single counties. This ensures that the estimates do not reflect shocks in those areas.

We interpret this result as evidence that out-migration generates general—not only innovation—

information flows between the areas where emigrants settle and where they originate. We cannot

disentangle—-and this goes beyond the scope of this paper—the precise underlying mechanism. For

example, increased coverage of US-related news may be demand-driven because the local population

may demand information covering the areas where their loved ones settled. On the other hand, US em-

igrants could have sponsored local newspapers to cover news of the areas where they had located. In

this sense, our estimates may reflect a supply-side factor. What is crucial for this paper is that, notwith-

standing the precise underlying mechanism, out-migration ignites cross-country information flows. The

return innovation effect is thus one of the possibly many effects of out-migration on countries sending

migrants.52

6.3.3 Trade-Induced Technology Transfer

The telegraph analysis suggests that market integration, fostered by migration ties, is a major driver of

the return innovation result. Here, we provide one additional piece of evidence to support this inter-

pretation.53 The scope of this exercise is to explore the possible proximate determinants of information

diffusion. First, it may be that emigrants themselves are exposed to novel knowledge, which they con-

tribute to spreading. Alternatively, migration ties may facilitate the establishment of trade linkages,

which in turn foster cross-border knowledge flows (Aleksynska and Peri, 2014; Ottaviano et al., 2018).

To study this second effect, we explore one specific historical example. In 1930, the United States

passed a tariff—the Smoot-Hawley Act —which sharply increased import duties and hampered trade

(Eichengreen, 1986). We leverage variation in the tariff increase across technology classes in a difference-

in-differences setting.54 We find that patenting decreases in districts more exposed to technologies that

the Act more heavily targeted. This result suggests that migration ties may facilitate international trade,

thus contributing to market integration and nurturing the diffusion of novel knowledge. At the same

time, however, the magnitude of the estimated effect is modest, especially given the large increase in

52A recent literature documents the disparate effects of out-migration on attitudes towards democracy (Spilimbergo, 2009), de-

mand for political change (Karadja and Prawitz, 2019), wages (Dustmann et al., 2015), technology adoption and innovation

(Andersson et al., 2022; Coluccia and Spadavecchia, 2022), social norms (Tuccio and Wahba, 2018). Our analysis confirms that

migration ties nurture the exchange of information. These flows prompt the cross-border diffusion of novel knowledge but

their influence extends well beyond.
53We discuss the literature and the technical implementation of the empirical analysis in Appendix section D.1.
54We thus exploit between-class variation in exposure to the tariff increase to estimate the effect of trade on knowledge flows. The

underlying intuition is that trade in industries that were more heavily targeted by the act suffered relatively more. Aggregate

trade volumes support this interpretation.
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tariff duties sanctioned by the Act. We thus view trade-induced knowledge diffusion as one, but likely

not the only, determinant of information flows.

The literature identifies several margins along which trade can impact innovation. Since the tariff

reform was one-sided, it is unlikely that depressed import competition or access to intermediate inputs

drive this result (e.g., see Bloom et al., 2016; Autor et al., 2020). We are unable to conclusively disentan-

gle the impact of export opportunities (e.g., see Atkin et al., 2017) from the information access effect of

migration ties (Aleksynska and Peri, 2014). The research design, however, leverages cross-district varia-

tion in previous US emigration rates. A purely export-driven effect would not reflect variation along this

margin and would thus be unlikely to drive the results.

6.4 Potential Additional Mechanisms

In this section, we discuss some potential additional mechanisms that may explain the return innovation

result. It is worth stressing that these may operate on top, and not instead, of return migration, cross-

border interactions, and economic integration.

6.4.1 Temporary Migrations

When disentangling the possible mechanisms behind the return innovation effect, we contrasted those

requiring physical return migration with those that do not. We concluded that physical return is an im-

portant determinant of return innovation, but we provide evidence that other mechanisms operate on

top of it that do not require physical return. It may be possible that (unobserved) short-term temporary

migrations influence the dynamics of innovation in the UK. We cannot observe temporary migrants be-

cause we construct migration flows from census data. Censuses are, in turn, only administered to the

residing population every ten years. Our data would thus fail to reflect such temporary migration move-

ments. For the reasons above, we cannot quantify the importance of industrial espionage. Episodes of

industrial espionage were relatively common during the Industrial Revolution (Harris, 1998).

Temporary migrations and industrial espionage would confound our estimates if such migrations

were correlated with observed migration patterns. We believe that it is unlikely that this factor bears rel-

evant quantitative implications. First, the notion of a “temporary migrant” in XIX-century transatlantic

migration is unclear. Piore (1980) refers to Southern and Eastern European migrants as temporary be-

cause they planned to return to their origin countries at some point. This could take, however, decades.

For example, a one-way cabin travel ticket from New York to Liverpool, at roughly 100$, would cost as

much as 20% of the average annual US income (Dupont et al., 2017). This suggests that the extent of short-

term stays must have been relatively limited. Moreover, Piore (1980) notes that “temporary” migrants

were relatively low-skilled and, thus, less likely to operate technology transfer. Industrial espionage,

in turn, does not appear to be quantitatively sufficient to generate the return innovation effect that we
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estimate.

Furthermore, our research designs speak against the temporary migration and the industrial es-

pionage mechanisms. First, the instrumental variable research design largely rules these mechanisms

out. Suppose that measured out-migration and unobserved temporary migrations or industrial espi-

onage were correlated across origin districts and destination counties. Our pull instrumental variable

randomizes county-level immigration shocks leveraging (conditional) variation in the decade counties

were connected to the railway network. While we show that the resulting instrument predicts actual

out-migration, it is likely that the source of pull variation is not as active for temporary “business” mi-

grants or spies. Second, for temporary migration or industrial espionage to explain the double and triple

differences result, one would need such flows to be correlated with the county-level innovation shocks.

This channel seems unlikely, although it cannot be directly tested and refuted.

6.4.2 Monetary Remittances

Along with classical “brain drain” arguments, monetary remittances have been a major subject of em-

pirical investigations in the migration literature (Clemens, 2011). Remittances have been found to con-

tribute only modestly to the economic development of emigration countries. This notwithstanding, it is

possible that the inflow of capital through remittances may have sustained increased innovation activ-

ity, perhaps by relaxing financial constraints or access to credit (Gorodnichenko and Schnitzer, 2013).

It would be more difficult, however, that it would have impacted the direction of innovation and, most

importantly, that this effect would have been correlated with variation in knowledge exposure.

Disaggregated data on financial remittances, unfortunately, do not exist. We thus remain silent on

the possibility that the documented positive effect of out-migration on innovation depends on financial

remittances. This capital inflow, however, cannot explain why out-migration influences the direction of

innovation unless knowledge and monetary remittances go hand in hand. This is a possibility that we

cannot explore. It nonetheless highlights that financial and innovation remittances shape innovation in

a complementary, rather than mutually exclusive, fashion.

6.5 Discussion

Our results bear potentially far-reaching implications for policy-makers. We show that emigration does

not necessarily further underdevelopment or stagnation, as the “brain drain” literature seems to suggest

(Docquier and Rapoport, 2012). Instead, out-migration can foster innovation, technology adoption, and

diffusion and thus empower long-run economic growth. Rather than focusing on blocking the emigration

of skilled individuals, our central recommendation to policy-makers in emigration countries would be to

foster cooperation and exchanges between them and the population remaining in the home country. Our

results and more recent albeit narrative evidence by Saxenian (1999, 2006) suggest that this approach
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can yield important and lasting benefits on the economic development of emigration countries.

Consider, as an example, the case of the ongoing diaspora of the Italian scientific community. Italy is

often described as an archetypal instance of brain drain (Anelli et al., 2023). In 2020, fifty-five Italian re-

searchers were awarded a European Research Council (ERC) starting grant, possibly the most prestigious

award for early-career scholars working in the European Union. Only nineteen (≈ 35%) of them worked

in Italian institutions. Italy is the country with the lowest share of ERC-winning researchers working

in home institutions among those for which data are reported. This paper sheds new light on the eco-

nomic contribution of the remaining thirty-six (≈ 65%) on science, innovation, and, ultimately, growth

in Italy.55 Several other countries, however, have been witnessing important episodes of out-migration,

ranging from European countries to India, China, or Pakistan. In fact, Saxenian (1999) specifically analy-

ses the Indian and Taiwanese emigration to Silicon Valley. More generally, we study how the entire stock

of emigrants influences the dynamics of innovation in their sending countries. In doing so, we enrich

our understanding of the consequences of emigration compared to studies that focus on sub-samples of

super-skilled emigrants (e.g., see Prato, 2021).

Concerns over the external validity of these results are natural, given the setting we analyze. We

nonetheless think that History can inform the scholarly debate and policy-making for two main reasons.

First, as previously mentioned, Saxenian (1999, 2006) qualitatively documents similar return innovation

effects with respect to the Taiwanese and Indian emigration to the Silicon Valley area. Second, we pro-

vide evidence that the UK emigration to the US in the XIX century largely resembles, mutatis mutandis,

migration between European countries and the United States during the XXI. Compared to the rest of the

English population, migrants were positively selected. They were similarly more likely to be employed

in skilled occupations than the average native and to live in urban centers. These patterns suggest that

a cautious comparison between historical and contemporary migration episodes can yield important

insights for policy-makers and scholars.

7 Conclusions

The diffusion of innovation across countries is a major factor shaping long-run economic development.

In this paper, we argue that international migrations generate knowledge flows that contribute to the

diffusion of innovation into emigration countries. This result—which we label “return innovation”—

offers a more nuanced view of the effect of emigration on innovation compared to the traditional “brain

drain” hypothesis, which interprets it as a depletion of the human capital of countries sending migrants.

55These figures are the result of authors’ calculations over data released by the ERC, available at this link. We mention the Italian

case because Italy underwent a major loss of skilled human capital in recent years. Between 2008 and 2016, more than 500,000

Italians emigrated. Comparable high-skilled emigration, however, concerns several other developed economies (United Nations

and OECD, 2013).
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To study this question, this paper explores the English and Welsh mass migration to the United States

between 1870 and 1940. To construct a granular measure of transatlantic migration flows, we link cen-

sus records of British immigrants in the US to the individual-level UK population census. The resulting

dataset allows us to observe the universe of (male) British immigrants after they migrate to the US and

before leaving the UK. We complement this with newly digitized patent data covering the universe of

patents in England and Wales. On top of these unique, high-quality data, the absence of stringent inter-

national intellectual property protection and active migration policies provide two prominent appealing

features of this historical setting compared to contemporary scenarios.

We provide novel, causal evidence that exposure to US innovation through migration ties contributes

to the diffusion of US technology in Britain. Innovation activity in the UK shifts to sectors that emigrants

are most exposed to in the US. To address endogeneity concerns arising from the assortative matching

of British immigrants in the US, we develop a new shift-share instrument that exploits the conditional

timing of connection to the railway network to randomize emigration across counties. Moreover, we

implement a triple-differences research design that leverages variation across counties and technology

classes. We can thus document a causal link between exposure to foreign knowledge through migration

ties and innovation activity. By looking at the textual similarity between UK and US patents, we document

that exposure to US knowledge stimulates cross-border technology transfer while also nurturing original

innovation in Britain.

What drives the return innovation effect? We find that the physical return of migrants is a crucial

driver as it explains approximately half of the return innovation effect. Exploiting the granular nature

of our data, we provide evidence that social interactions between the emigrants and their communities

of origin represent another important channel through which technologies diffuse into the emigration

country, even if emigrants do not return. Additionally, we document that migration ties promote the

diffusion of knowledge by fostering information flows and cross-border market integration. Leveraging

a comprehensive repository of historical newspapers, we show that migration linkages further promote

general-purpose information flows by increasing attention to US-related news in UK media outlets.

The historical evidence suggests that the British mass migration to the United States may be compa-

rable to present-day cross-border movements between developed countries. As the number of interna-

tional migrants has been steadily rising over the past decades, the role of human mobility as a driver

of knowledge and information diffusion across countries in a globalized world economy bears quanti-

tatively relevant implications. History can thus inform the scholarly literature and policymakers on the

complex relationship between out-migration, innovation, and, ultimately, long-run economic growth.
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Tables

(1) (2) (3) (4) (5)

Observations Mean Std. Dev. Min. Max.

Panel A. Innovation

Total Patents 5489 225.826 826.432 1 19789

Electricity Patents 5489 23.565 200.755 0 9430

Instruments Patents 5489 17.69 80.2 0 1850

Personal Articles & Furniture 5489 20.136 73.812 0 1548

Ships & Aeronautics 5489 16.463 55.062 0 1152

Transportation 5489 20.024 74.479 0 1923

Panel B. Emigration

N. of US Emigrants 3779 61.765 91.36 0.303 1073.998

N. of Return US Emigrants 2494 35.342 52.202 0.064 730

Panel C. Census Tracts

Population (1,000s) 3773 42.165 54.973 0.092 703.559

Share of Males (%) 3773 47.645 2.586 36.112 62.686

Share of Manufacture Empl. (%) 3773 13.213 6.306 2.569 42.723

Share of Agriculture Empl. (%) 3773 14.43 6.889 1.454 32.914

Share of Transportation Empl. (%) 3773 2.578 1.272 0 13.857

Share of Liberal Professions (%) 3773 1.679 0.65 0.43 6.873

Share of Public Servants (%) 3773 0.897 1.427 0 24.498

Panel D. Individual-Level Panel

Share of Inventors 471013 0.009 0.094 0 1

N. of Patents 471013 0.018 0.356 0 87

N. of Patents if Inventor 4210 1.993 3.205 1 87

N. of Neighborhood Emigrants 471013 13.62 43.338 0 756

N. of Non-Return Neighborhood Emigrants 471013 12.979 40.888 0 512

Table 1. Descriptive Statistics of Selected Variables

Notes. This table displays summary descriptive statistics for a subset of the variables in the dataset. In Panels A, B,

and C, variables are observed at the district level and at a decade frequency. In Panel D, the statistics are computed

for individuals observed for twenty years around the 1891 and 1911 census years. An individual is labeled an

inventor if they obtain at least one patent over this period. Panel A reports statistics for the top five most frequent

technological classes. In Panels B and C, the underlying data are cross-walked to 1900 district borders.
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Ordinary Least Squares Reduced Form Two-Stages Least-Squares

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Dependent variable: Number of patents

Knowledge Exposure𝑡 1.342∗∗∗ 0.037∗∗∗ 1.224∗∗∗

(0.143) (0.007) (0.195)

Knowledge Exposure𝑡−1 0.909∗∗∗ 0.015∗∗∗ 0.488∗∗

(0.145) (0.005) (0.190)

Knowledge Exposure𝑡−2 0.379∗∗∗ -0.012 -0.398

(0.112) (0.014) (0.478)

Mean Dep. Var. 10.392 13.345 15.256 8.706 12.045 15.314 8.708 12.049 15.319

Std. Beta Coef. 0.299 0.148 0.050 0.075 0.022 -0.013 0.296 0.088 -0.053

K-P F-stat 109.826 109.826 109.826

Panel B. Dependent Variable: Patents per capita (× 10,000)

Knowledge Exposure𝑡 0.178∗∗∗ 0.004∗∗∗ 0.146∗∗∗

(0.020) (0.001) (0.027)

Knowledge Exposure𝑡−1 0.092∗∗∗ 0.002∗∗∗ 0.078∗∗∗

(0.018) (0.001) (0.024)

Knowledge Exposure𝑡−2 0.049∗∗∗ 0.000 0.001

(0.015) (0.001) (0.043)

Mean Dep. Var. 2.066 2.629 2.973 1.748 2.345 2.980 1.747 2.346 2.980

Std. Beta Coef. 0.124 0.054 0.023 0.023 0.011 0.000 0.093 0.046 0.000

K-P F-stat 107.825 107.825 107.825

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11268 11268 11268 11214 11214 11214 11214 11214 11214

N. of Observations 67549 67549 56295 56070 56070 56070 56047 56047 56047

Table 2. Effect of Exposure to US Technology on Innovation in Great Britain

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of obser-

vation is a district-technology class pair, observed at a decade frequency between 1880 and 1939. The main ex-

planatory variable is knowledge exposure. In Panel A, the dependent variable is the number of patents; in Panel

B, the dependent variable is the number of patents normalized by district-level population in 1880 and multiplied

by 10,000 for readability. In columns (1–3), we estimate the OLS correlation with the observed measure of knowl-

edge exposure; in columns (4–6), we estimate the reduced-form association with the railway-based instrument of

knowledge exposure through OLS; columns (7–9) report the two-stage least-squares estimate. Each model includes

district-by-decade and district-by-technology class fixed effects. Standard errors are reported in parentheses and

are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Synthetic Shocks Great Influenza Pandemic Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Full Sample No London No Lancs No S/W Full Sample No London No Lancs No S/W

Synth. Shock × Post × Emigrants 0.434*** 0.277*** 0.578*** 0.420***

(0.121) (0.082) (0.125) (0.127)

Pharma × Post × Emigrants 0.613*** 0.417*** 0.678*** 0.461***

(0.164) (0.140) (0.172) (0.156)

District-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

District-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes

Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Number of Units 10029 9697 8760 9547 10727 10217 9384 10047

Number of Observations 393046 382153 343450 375850 429080 408680 375360 401880

Mean Dep. Var. 1.361 1.029 1.263 1.276 0.725 0.532 0.682 0.668

Table 3. Effect of Exposure to US Innovation Shocks on UK Innovation

Notes. This table displays the effect of US innovation shocks on innovation activity in the UK. The unit of obser-

vation is a district-technology class pair observed at a yearly frequency between 1900 and 1939. The dependent

variable is the number of patents. In columns (1–4), the independent variable is an indicator that, for a given

district–technology, returns value one after a synthetic innovation shock in that technology class is observed in

at least one county where the district has above-average out-migration. A synthetic innovation shock is observed

whenever the residualized number of patents observed in the country is in the top 0.5% of the overall distribution.

In columns (5–8), the independent variable is an indicator that returns value one for pharmaceutical patents only

and only if emigration from the observed district to counties in the top quartile of the influenza mortality distri-

bution is in the top quartile across districts. Both models should thus be interpreted as triple-difference designs.

Since models in columns (1–4) are staggered designs, we estimate them using the imputation estimator developed

by Borusyak et al. (2021). In columns (2) and (6), we drop districts in the London area; in columns (3) and (7), we

exclude districts in the Lancashire area; in columns (4) and (8), we drop districts in the South-West area. Excluded

regions are the first three in terms of patents granted. All models include district-by-year, district-by-technology

class, and technology class-by-year fixed effects; standard errors, clustered two-way by district and technology

class, are shown in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Dep. Var.: Number of Patents

(1) (2) (3) (4) (5) (6)

Knowledge Exposure𝑡 1.385∗∗∗ 1.347∗∗∗ 1.301∗∗∗ 0.697∗∗∗

(0.306) (0.389) (0.319) (0.092)

Return Knowledge Exposure𝑡 0.306∗∗∗ 0.254∗∗∗ 0.311∗∗∗ 0.273∗∗

(0.075) (0.084) (0.084) (0.108)

Knowledge Exposure𝑡−1 1.833∗∗∗ 0.060

(0.489) (0.444)

Return Knowledge Exposure𝑡−1 0.156∗∗∗ 0.170∗

(0.028) (0.084)

Knowledge Exposure𝑡−2 0.416 0.139

(0.243) (0.436)

Return Knowledge Exposure𝑡−2 0.218 0.192∗

(0.131) (0.099)

District-Decade FE Yes Yes Yes Yes Yes Yes

Technology Class FE Yes – – Yes Yes Yes

Class-Decade FE No Yes Yes No No No

District-Class FE No No Yes No No No

N. of District-Class 11376 11376 11376 11375 11371 11340

N. of Observations 45464 45464 45464 34114 22742 22680

Mean Dep. Var. 9.869 9.869 9.869 12.175 15.871 15.907

Std. Beta (KE) 0.211 0.205 0.198 0.200 0.041

Std. Beta (Return KE) 0.287 0.238 0.291 0.136 0.054

Table 4. Association Between UK Innovation and Exposure to US Technology Through Over-
all and Return Emigration

Notes. This table reports the association between innovation and the baseline measure of knowledge exposure,

accounting for return knowledge exposure. The unit of observation is a district-technology class pair, observed at a

decade frequency between 1880 and 1920. The dependent variable is the number of patents by district-technology

decade. Return knowledge exposure is constructed by interacting county-level specialization with district-county

return migration flows analogously to the baseline knowledge exposure measure. In columns (1) and (4–6), we

include district-by-decade and technology class fixed effects. In column (2), we add technology-by-decade fixed

effects; the specification in column (3) is saturated. Standard errors, clustered at the district level, are displayed

in parentheses. The Table reports the standardized beta coefficient of both the baseline knowledge exposure term

and the return knowledge exposure term.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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N. of Patents I(N. of Patents > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Post × Relative US Emigrant 0.059∗∗∗ 0.035∗∗∗

(0.006) (0.003)

Post × Relative Return US Emigrant 0.335∗∗∗ 0.332∗∗∗ 0.126∗∗∗ 0.124∗∗∗

(0.068) (0.068) (0.031) (0.031)

Post × Relative Non-Return US Emigrant 0.060∗∗∗ 0.059∗∗∗ 0.035∗∗∗ 0.034∗∗∗

(0.006) (0.006) (0.003) (0.003)

County-Surname FE Yes Yes Yes Yes Yes Yes Yes Yes

Surname-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

County-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

N. of Surname-County 416735 416735 416735 416735 416735 416735 416735 416735

N. of Observations 25004100 25004100 25004100 25004100 25004100 25004100 25004100 25004100

Mean Dep. Var. 0.083 0.083 0.083 0.083 0.054 0.054 0.054 0.054

Table 5. Effect of Family Member Emigration on Innovation Produced by Relatives of the
Emigrant in the UK

Notes. This table reports the effect of transatlantic emigration on innovation by inventors with the same surname

as the emigrant. The unit of observation is a surname-county couple, observed at a year frequency between 1870

and 1929. The dependent variable in columns (1–4) is the number of patents granted to inventors with a given

surname in a given county and year; the dependent variable in columns (5–8) is a categorical variable that takes

value one if the number of patents is strictly positive. In columns (1) and (5), the treatment takes value one after

at least one individual from a given county and with a given surname emigrates to the US, and zero otherwise;

in columns (2) and (6), we restrict to emigrants that at some point return; in columns (3) and (7), we restrict to

emigrants that never return; in columns (4) and (8) we horse-race the two latter treatments. Each regression

includes county-by-surname, surname-by-year, and county-by-year fixed effects. Standard errors, clustered at the

surname level, are displayed in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Baseline Sample Dropping Individuals in...

(1) (2) (3) (4) (5) (6) (7)

London Lancashire South-West

Panel A. All Emigrants

Neighborhood Emigrant × Post 0.167∗∗∗ 0.180∗∗∗ 0.170∗∗∗ 16.208∗∗∗ 0.130∗∗ 0.180∗∗∗ 0.198∗∗∗

(0.053) (0.055) (0.056) (5.758) (0.061) (0.055) (0.061)

Std. Beta Coef. 0.022 0.024 0.023 0.211 0.018 0.025 0.025

Panel B. Only Non-Return Emigrants

Non-Return Neighborhood Emigrant × Post 0.165∗∗∗ 0.189∗∗∗ 0.167∗∗∗ 15.749∗∗∗ 0.108∗ 0.183∗∗∗ 0.211∗∗∗

(0.054) (0.056) (0.057) (5.987) (0.060) (0.056) (0.062)

Std. Beta Coef. 0.021 0.024 0.021 0.196 0.014 0.024 0.026

Individual FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes – Yes Yes Yes Yes Yes

Parish × Year FE No Yes No No No No No

Matching No No Yes No No No No

Sample Full Full Full Inventors Full Full Full

N. of Individuals 473112 473112 469585 4224 410327 422230 352064

N. of Observations 9462240 9419787 9391700 84480 8206540 8444600 7041280

Mean Dep. Var. 0.890 0.892 0.893 99.716 0.794 0.836 0.893

S.D. Dep. Var. 40.291 40.324 40.351 414.695 37.439 39.126 41.333

Table 6. Effect of Emigration on Innovation Produced by Former Neighbors of the Emigrant
in the UK

Notes. This table reports the effect of neighborhood out-migration on innovation. The units of observation are

individuals who are observed yearly between 1900 and 1920. In columns (1–3) and (5–7), the sample consists of the

universe of males who did not emigrate over the period and that were at least 18 years old in 1900; in columns (4)

and (8), we restrict the sample to inventors. The dependent variable is the number of patents obtained annually. In

columns (1–4), the sample consists of individuals residing in all England and Wales divisions; in columns (5–7), we

exclude the top tree-patents producing areas: London, Lancashire, and the South-West. In Panel A, the independent

variable is an indicator that, for a given individual, returns value one after at least one person that was living in the

same neighborhood as the individual migrates to the United States; in Panel B, we restrict to emigrants that never

return in the period of observation. In this context, “neighborhood” refers to the same street, square, or similar.

We explore an alternative distance-based definition in Appendix Table E.15. Each model includes individual and—

at least—year fixed effects; in column (2), we include parish-by-year fixed effects; in column (3), individuals are

weighted by their coarsened exact matching weight. The estimates are obtained using the method discussed in

Borusyak et al. (2021) to account for the staggered roll-out of the treatment across individuals. Standard errors,

clustered at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Double Differences Triple Differences

(1) (2) (3) (4) (5) (6)

All Connected Not Connected All Connected Not Connected

Post × Emigrants 1.345∗∗∗ 1.639∗∗∗ -0.083

(0.451) (0.559) (0.097)

Post × Knowledge Exposure 0.027∗∗ 0.027∗∗ -0.003

(0.010) (0.011) (0.005)

District FE Yes Yes Yes – – –

Class FE Yes Yes Yes – – –

Year FE Yes Yes Yes Yes Yes Yes

District-Class FE – – – Yes Yes Yes

N. of District-Class 631 463 168 631 463 168

N. of Observations 10096 7408 2688 181728 133344 48384

Mean Dep. Var. 5.610 7.241 1.115 0.312 0.402 0.062

Std. Beta Coef. 0.114 0.125 -0.039 0.035 0.034 -0.007

Table 7. The Transatlantic Telegraph Cable and Innovation in the UK

Notes. This table displays the estimated effect of the connection of the US and UK telegraph lines on innovation

in the UK. The units of observation are districts in columns (1–3) and district-technology class pairs in columns

(4–6). Units are observed yearly between 1860 and 1875. The dependent variable is the total number of patents

granted. In columns (1–3), the independent variable is an interaction between the—time-invariant—number of

US emigrants in the 1870s and an indicator variable that returns value one after the transatlantic cable success-

fully connected the UK and the US in 1866, and zero otherwise; in columns (4–6) the treatment interacts—time-

invariant—knowledge exposure in the 1870s with the same posttreatment indicator. In columns (1) and (4), the

sample includes all districts; in columns (2) and (5) (resp. 3 and 6), we restrict the estimation to districts that

were (resp. were not) connected to the domestic UK telegraph system. Models (3) and (6) should be interpreted as

placebo exercises. Regressions include fixed effects for district and year in columns (1–3) and district-by-class and

year in columns (4–5). Standard errors, clustered at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Dependent Variable: Number of Newspaper Mentions

OLS Reduced Form 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. US-Wide Coverage

US Emigrants 6.753∗∗∗ 6.632∗∗∗ 7.207∗∗∗ 24.396∗∗∗ 24.228∗∗∗ 25.061∗∗∗

(0.958) (1.006) (0.600) (1.570) (1.611) (0.912)�US Emigrants 1.451∗∗∗ 1.440∗∗∗ 1.501∗∗∗

(0.121) (0.124) (0.078)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Mean Dep. Var. 1017.635 1017.635 2276.989 1017.635 1017.635 2276.989 1017.635 1017.635 2276.989

Panel B. State-Wide Coverage

US Emigrants 1.050∗∗∗ 1.049∗∗∗ 1.103∗∗∗ 10.060∗∗∗ 10.061∗∗∗ 10.091∗∗∗

(0.095) (0.096) (0.052) (0.428) (0.430) (0.458)�US Emigrants 0.038∗∗∗ 0.038∗∗∗ 0.039∗∗∗

(0.001) (0.001) (0.001)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

State-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Mean Dep. Var. 57.486 57.486 127.984 64.672 64.672 136.660 64.672 64.672 136.660

Panel C. County-Wide Coverage

US Emigrants 1.120∗∗∗ 1.120∗∗∗ 1.217∗∗∗ 4.861∗∗∗ 4.863∗∗∗ 5.130∗∗∗

(0.148) (0.148) (0.079) (0.471) (0.460) (0.291)�US Emigrants 0.055∗∗∗ 0.055∗∗∗ 0.058∗∗∗

(0.006) (0.005) (0.004)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

County-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Mean Dep. Var. 0.003 0.003 0.007 0.004 0.004 0.008 0.004 0.004 0.008

N. of Newspapers No Yes No No Yes No No Yes No

Districts in Sample All All w/News All All w/News All All w/News

N. of Districts 602 602 321 602 602 321 602 602 321

Table 8. Effect of US Emigration on Newspaper Coverage of US-related News

Notes. This table displays the effect of out-migration on newspaper coverage of emigrants’ destinations. The ob-

servation unit is: in Panel A, a district; in Panel B, a district-US state pair; in Panel C, a district-US county pair. Units

are observed at a decade frequency between 1880 and 1930. The dependent variable is the number of articles

mentioned: in Panel A, “United States”; in Panel B, US states; in Panel C, US counties. The independent variable is:

in Panel A, the number of US emigrants; in Panel B, the district-state emigrants; in Panel C, the district-county em-

igrants. Models (1–3) estimate the model through OLS; models (4–5) report the reduced-form association between

mentions and the out-migration instrument; models (7–9) report the two-stage least squares estimates. Regressions

include district fixed effects and: in Panel A, decade fixed effects; in Panel B: state-by-decade fixed effects; in Panel

C: county-by-decade fixed effects. Standard errors, clustered at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Figure 1. Number of US Immigrants from the UK and Linked US-UK Migrants, 1840–1930

Notes. This figure compares the total number of English and Welsh immigrants in the United States as recorded in

official statistics from Willcox (1928) with the linked emigrants’ sample developed in this paper. The light gray bars

display the total inflow of English and Welsh immigrants in the US over the period 1840–1870, i.e., out of the period

we study. The darker gray bars report the same figure for 1870–1924. The blue line, whose values are reported on

the right 𝑦-axis, reports the total number of English and Welsh immigrants in the US that appear in our matched

sample. By construction, we can only match men who appear at least once in one British census. Figures are in

thousand units.
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Figure 2. Spatial Distribution of US Migrants Across British Districts

Notes. This figure reports the spatial distribution of emigrants across English and Welsh districts over the period

1870–1930. Data are from the matched emigrants’ sample. The total number of emigrants over the period is nor-

malized by district population in 1900 and is reported in‰units. Districts are displayed at 1900 historical borders,

and the emigrant population is cross-walked to consistent borders as described in A.1. Lighter to darker blues in-

dicate higher emigration rates.
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OLS Coefficient = 10.675 (Clust. Std. Err. = 1.138). R2 = 0.707.
IV Coefficient = 2.174 (Clust. Std. Err. = 0.395). R2 = 0.731.

Figure 3. OLS and Reduced-Form Association between Knowledge Exposure and Innovation

Notes. This figure is a binned scatter plot of the OLS (in red) and the IV reduced-form (in blue) association between

knowledge exposure and innovation. The unit of observation is a district-technology class observed at a yearly

frequency between 1880 and 1939. The graph partials out district-by-decade and district-by-technology class fixed

effects. The red dots report the correlation between actual knowledge exposure and the number of patents; the

blue dots report the reduced-form association between the instrument for knowledge exposure and the number

of patents. We report in note the regression coefficient for both the OLS and the IV regression with their standard

errors clustered at the district level and the R2.
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Figure 4. Heterogeneous Effects of Return Innovation Across Technology Classes

Notes. This figure reports the reduced-form effect of instrumented knowledge exposure on innovation by technol-

ogy class. Each dot reports the coefficient of a regression between the total number of patents and the instrument

for knowledge exposure in a given technology class. The unit of observation in each regression is a district, ob-

served at a decade frequency between 1880 and 1939. Regressions include district and decade fixed effects. Bands

report 95% confidence intervals. Standard errors are clustered at the district level. The grey line plots the corre-

lation between the revealed UK specialization on the 𝑥-axis and the return innovation coefficient for each sector

on the 𝑦-axis. Red (resp. blue) dots display the regression coefficients for the US (resp UK) revealed comparative

advantage sectors.
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Figure 5. Effect of Exposure to US Innovation Shocks on UK Innovation

Notes. These figures report the dynamic treatment effects of synthetic shocks (Panel 5a) and the Great Influenza

Pandemic shock (Panel 5b) on innovation. The units of observation are district-technology class pairs; units are

observed at a yearly frequency in Panel 5a and at a biennial frequency in Panel 5b between 1900 and 1939. The

dependent variable is the number of patents. The treatment is an indicator equal to one if: in Panel 5a, a synthetic

shock is observed in a given technology in at least one county where the district has above-median out-migration;

in Panel 5b, for pharmaceutical patents, emigration from a given district to counties in the top quartile of the mor-

tality distribution is in the top quartile across districts. The black dashed line indicates the timing of the treatment.

Standard errors are two-way clustered by district and technology class; bands report 95% confidence intervals.
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(a) Backward Similarity (“Copying”)

-.5

0

.5

1

Es
ti

m
at

ed
 E

ff
ec

t o
f U

S 
In

no
va

ti
on

Sh
oc

k 
on

 B
ri

ti
sh

 In
no

va
ti

on

9876543210-1-2-3-4-5-6

Years since Synthetic Shock

(b) Excess Forward Similarity (“Originality”)

Figure 6. Effect of Exposure to US Shocks on the UK-US Patent Similarity

Notes. These figures report the dynamic treatment effects of synthetic shocks on backward (Panel 6a) and excess

forward (Panel 6b) similarity between UK and US patents. The units of observation are district-technology class

pairs observed at a yearly frequency in 1900–1939. In Panel 6a, the dependent variable is the text similarity be-

tween UK patents and US patents issued five years before (“copying”); in Panel 6b, the dependent variable is the

similarity of UK patents with US patents granted in the subsequent five years, over the similarity of UK patents with

US patents granted in the preceding five years (“originality”). The similarity measure is akin to Kelly et al. (2021).

The treatment is an indicator equal to one if a synthetic shock is observed in a given technology in at least one

county where the district has above-median out-migration. Regressions include district-by-year, technology class-

by-year, and district-by-technology class fixed effects. The black dashed line indicates the timing of the treatment.

Standard errors are two-way clustered by district and technology class; bands report 95% confidence intervals.
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Figure 7. Effect of the Transatlantic Telegraph Cable on Innovation

Notes. The figure displays the estimated dynamic treatment effect of the connection of the US and UK telegraph

lines on innovation in the UK. The units of observation are districts observed at a yearly frequency between 1860

and 1875. The dependent variable is the number of patents. The independent variable is an interaction between

the—time-invariant—number of emigrants in the 1870s and a posttreatment indicator that equals one after the

transatlantic telegraph cable. Blue dots report the dynamic treatment effects on the sample of districts connected

to the domestic UK telegraph network in 1862; red dots report those for the districts not connected to the network.

The black solid vertical bar indicates the year the first cable was laid down (1866); the dashed black vertical line

flags the year when the second and third cables were laid (1873-1874). Regressions include district and year fixed

effects. Standard errors are clustered at the district level; bands report 95% confidence bands.

◀ Back: Mechanisms
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A Data Sources and Methods

This section describes the sources and methods we adopted to assemble and merge the various datasets

that underlie the empirical analysis. We defer a more detailed discussion of the novel patent data that

we digitize, and the linked international migrants sample to sections B and C, respectively.

A.1 Summary of Data Sources

Patent Data US patent data are from Berkes (2018), who digitizes the universe of patents granted be-

tween 1836, when the US patent and trademark office was established, and 2010. In this paper, we are

interested in the CPC technology class, the issue year, and the coordinates of residence of each inven-

tor. We then assign each patent to US counties at 1900 borders. Depending on the number of inventors,

a single patent may be assigned to multiple counties. In the case of patents with multiple inventors,

we weigh each by the inverse of the number of inventors to avoid multiple counting. English and Welsh

patents after 1900 are available at the European patent office. To construct our dataset, we leverage bulk

access to the PATSTAT dataset. Information contained in PATSTAT includes the CPC class and the issue

year. To retrieve the location of each inventor, we merge the PATSTAT data with the PatCity repository,

which contains geo-coded information on the universe of English and Welsh patents during this period

(Bergeaud and Verluise, 2022). Data before 1900 are not available. In section B, we describe how we

digitize the universe of patent documents issued over the period 1853–1900 to fill this substantial gap.

Importantly, we map 3-digit CPC classes to a coarser taxonomy of classes. To do that, we reduce them

to functional units using the CPC classification scheme. The scheme is publicly available at the follow-

ing link. To accommodate the historical context, we divide the transporting categories into two classes:

”Transporting”, which includes carriages, railways, and cars, and “Ships and Aeronautics”. Moreover,

we conflate the “Weapons and Blasting” and the “Mining” classes into the “Metallurgy” category because

few patents were observed in those industries. We further augment patent data by defining a measure

of “quality” or “innovativeness” following Kelly et al. (2021). This metric flags as influential those patents

that introduce terms that were not used before they were granted, and become common thereafter. We

evaluate this metric on the abstracts of patents granted after 1900. We apply this sample restriction for

consistency: in the period 1880–1899, in fact, we observe the full text of patents instead of their abstract.

Migration Data Disaggregated data on the origin of English and Welsh immigrants—and, more gener-

ally, of all other nationalities—do not exist. These we collected neither by receiving US authorities nor

by sending UK offices. We thus lack precise information on where British immigrants in the US came

from within the UK. We fill this gap and link the individual-level UK and US censuses, as described in C.

Ideally, we observe the universe of British emigrants to the United States between 1870 and 1930. For

those individuals, we know all information contained in the US Census and those detailed in the UK one.
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Most notably, we know where they came from. As we discuss more in detail later, we also link return mi-

grants. Since the last publicly available UK census dates to 1911, however, we can only construct return

migration flows over the period 1870–1910.

Population Census The main data sources we leverage are the individual-level non-anonymized UK

and US population censuses. The US census features prominently in the economic history literature as

a major source of detailed microdata, and we thus avoid discussing it any further (Ruggles et al., 2021).

The UK census is relatively less well-known (Schurer and Higgs, 2020). Although not as rich as its US

counterpart, the UK population census covers individuals who have resided in the UK since 1850. The

first census was run in 1841, but only 1851, 1861, 1881, 1891, 1901, and 1911 are completely digitized.56

Data in the census include the name and surname, birth year, division, county, district, parish, precise

address of residence, the specific occupation detailed through HISCO codes, and other variables that we

do not use in the paper, such as the type of dwelling and fertility information. We augment these variables

by geo-coding the universe of addresses that appear in the census to precise geographical coordinates,

as detailed in section A.2.

Newspapers We collect data on newspaper coverage of US-related news from the British Newspaper

Archive.57 Beach and Hanlon (2022) describe this dataset in detail. In this paper, we run a set of three

queries. First, we search for the words “United States”. Second, we perform fifty searches, one for each

state. Finally, we perform approximately three thousand searches, one for each county. Each search

spans the period 1850–1939. We collect the information at the article level. For each entry in the database,

we know the journal, day, month, and year of publication, whether it is an article or some other type

of content—e.g., an obituary–, the page, and the word count. Importantly, we collect information on the

universe of newspapers in the archive. Journal-level data contain the publishing address at the city level,

the first and last day, month, and year of activity, and the publication frequency—e.g., quarterly, daily.

We then geocode each newspaper to the coordinates of the city where it was published and map those

to 1891 registration districts. We can thus construct a measure of newspaper coverage at the district-

year level.58 In Table A.1, we provide a set of summary statistics on the resulting dataset. We collect

information for a total of 2022 newspapers: of these, 1459 are based in England, and 93 are published in

Wales. We exclude Scottish and Irish newspapers from the analysis. The average life of a newspaper in

this period is 40 years. In Panel B, we report district-level statistics by decade. The number of newspapers

decreases over time, as noted by Beach and Hanlon (2022), from an average of 2.3 newspapers per district

56The 1921 census is currently being digitized and is partially available. We do not use it because its coverage is still not complete

and because it is not available in bulk. All censuses after 1921 are subject to privacy restrictions.
57A limited free-tier access to newspaper data is available at the following link.
58Unfortunately, for newspapers based in London, we only know their city, i.e., London. In the newspaper analysis, we are thus

forced to conflate all urban London districts into a single “London” geographical unit.
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in the 1870s to 0.7 in the 1930s. It is unclear whether this is due to incomplete coverage in the later period.

In Panel C, we report the district-level statistics by division and find that, except for the London division,

newspapers appear to be quite sparse across the country. Figure A.3 displays the spatial distribution of

the number of newspapers across districts over the period and confirms the impression that newspapers

tend to evenly cover a substantial share of districts. London stands as a major outlier: we thus perform

all exercises dropping London districts and find consistent results.

Miscellaneous To construct the domestic UK telegraph network prior to the first transatlantic UK–US

cable (1866), we digitize the list of telegraph stations reported in the Zeitschrift des Deutsch-Österreichischen

Telegraphen-Vereins, Jahrgang, volume IX, 1862. This directory lists the universe of telegraph stations

outside of London in 1862. To the best of our knowledge, it is the most complete directory prior to the

introduction of the transatlantic cable. We geo-code each station to precise coordinates. The red dots in

Figure A.4 report each station. We then label each district with at least one telegraph station as “con-

nected” to the domestic network and as “not connected” otherwise.

We construct US county-level exposure to the Great Influenza pandemic using mortality statistics

collected by the US Bureau of Census. These data are available for a subset of counties representing

approximately 60% of the US population in 1900.

To compute the railway-based instrument, we construct US-county level immigration shocks follow-

ing the methodology described in Sequeira et al. (2020). We use the same data sources. Hence we defer

the interested reader to their paper for a more detailed discussion.

We digitize import and export yearly data from the 1935 edition of the Statistical Abstract of the

United States.59 In particular, we collect the yearly tariff rates applied between 1925 and 1929, i.e., before

the Smoot-Hawley Act, and between 1930 and 1935, i.e., after the Act. Tariff rates are available by sector.

We then map each industry to a technology class, as listed in Table A.3. In the baseline analysis, we

consider an industry protected if its tariff rate increases by more than 50% between 1925-1929 and 1930-

1935. We consider alternative thresholds as robustness checks.

GIS Shapefiles & Boundary Harmonization Patents and telegraph stations are mapped to 1900 reg-

istration district borders using historical GIS files and their coordinates.60 However, all data from the

population censuses appear at historical borders. Registration districts do not undergo major bound-

ary changes over the period that we study. However, we adapt the method presented by Eckert et al.

(2020) to UK districts to ensure that we work with consistent geographical units. To construct geograph-

59This publication is freely available at the following link.
60GIS data for the US are provided by NHGIS, whereas district boundaries have been digitized by the Great Britain Historical GIS

Project.
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ical crosswalks using their method, one needs to assume that variables are evenly distributed over the

area of geographical units. The crosswalk is then obtained by overlapping geographical units over time.

Suppose unit 𝑥 in decade 𝑑 is split, and 80% of its territory is assigned to itself, while 20% is assigned

to another district 𝑦. To construct a cross-walk relative to period 𝑑 + 𝑡2 for a generic variable between

decades 𝑑 − 𝑡1 and 𝑑 + 𝑡2, for 𝑡1, 𝑡2 > 0, one needs to multiply the variable measured in district 𝑥 in 𝑑 − 𝑡1

by 4/5, and add 1/5 of the variable in 𝑥 to that measured in 𝑦 in the same decade. We map registration

districts to their boundaries in 1901. Less than 5% of the overall area of England and Wales is re-assigned

in this way. We adopt the same methodology to map counties to their 1900 borders.

A.2 Geo-referenced Census Records

A notable feature of the UK census is that it contains precise information on the residential address of the

universe of British population. This information is extremely valuable because, in principle, it assigns

the finest possible location to each individual. In practice, however, it is highly non-standardized and

challenging to use. In this section, we discuss the methodology that we apply to assign geographical

coordinates to textual addresses. This dataset expands earlier work by Lan and Longley (2019), who

adopt a different strategy and only analyze the 1901 census, whereas we geo-reference the entire 1851-

1911 censuses. Furthermore, the geo-coded census sample is used in the individual-level analysis only.

All other exercises do not rely on these data.

A.2.1 Methodology

There are two ways to geo-reference historical addresses. One approach is to manually digitize historical

locations, either streets or enumeration units, from historical maps. However, this method does not scale

up and becomes rapidly unfeasible as the data grows. A second automated approach is to run text-based

address matching between historical data sources and address databases that have already been geo-

referenced. We follow this latter method since we need to geo-reference 5,464,578 unique addresses.

To implement the latter approach Lan and Longley (2019) exploit open-source address data from

OpenStreetMaps. In this paper, instead, we take advantage of the commercial geo-referenced database

developed by MapTiler AG. This has three key benefits compared to OpenStreetMaps-powered engines.

First, the data has some historical “depth”, meaning that historical names of locations are sometimes

recorded. Second, MapTiler AG provides a flexible address-correction engine that matches the query to

the closest address available in their dataset. Finally, this commercial database has better coverage than

OpenStreetMaps in rural areas.

To perform the actual matching, we first operate a preliminary manual trimming of addresses. First,

we remove house numbers because they undergo many changes and re-sequencing over time. Second,

we remove uninformative locations, such as “village”, “farm”, and “rectory”. Then, we input the resulting
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addresses as queries into the geo-referencing engine. Crucially, we discard the match if the resulting

coordinates are not within the parish’s boundaries where the address is recorded. This consistency check

is necessary because homonyms are frequent. Since observing two addresses with the same name within

a given parish is extremely rare, this ensures that the algorithm matches are not spurious.

A.2.2 Matching Performance

In Figure A.2, we report the distribution of the share of geo-referenced addresses by district and census

decade. The blue bars refer to the simple matching rate, defined as the share of geo-referenced addresses.

The black-contoured bars, instead, adjust for the number of residents recorded in each address. In each

figure, we report the average matching rates and their respective standard deviations. The average

matching rate ranges between 76% in 1851 and 86% in 1911. All distributions display substantial right-

skewness, meaning there are very few districts with a matching rate lower than 50%. The matching rate

increases over time for two reasons. First, the quality of recorded addresses increases in more recent

censuses. Second, the urban geography in 1911 is more similar to that in the MapTiler AG database than

in 1851. This is due to street re-labeling and urban agglomerates’ growth and consolidation. Figure A.1

displays the spatial distribution of the average geo-referencing rates across censuses. Figure A.1a reports

the crude rate, whereas Figure A.1b, we adjust by address-population. Except for Wales and some rural

districts at the center of England, the geo-referencing rates are above 80% everywhere. It is particularly

high—above 90%—in North-Western and South-Eastern England. More urbanized areas generally tend

to feature larger geo-referencing rates because addresses tend to be more informative. This notwith-

standing, differences are quantitatively small as the matching rate is remarkably homogeneous across

registration districts. Wales is the single most relevant exception. The geo-referencing rate there is very

low because addresses in the census until 1901-1911 tend to be reported in Welsh, especially in Western

areas.

Taken together, the results of the geo-referencing algorithms are satisfactory. More than 80% ad-

dresses are successfully matched to precise geographical coordinates. This ratio is even higher in areas

outside Wales, where innovation and migration activity are more intense.

A.3 Linked Inventor Sample

This section presents the methodology we use to link patents to census records. The linked inventors-

census sample is used in the individual-level analysis only. All other exercises do not rely on these data.

A.3.1 Methodology

We follow the logic of Berkes (2018), who links patents to census records in the US. We link patents

between 1881 and 1899 to the 1891 census and those between 1901 and 1920 to the 1911 census. Relative
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to our baseline sample, we thus drop patents issued after 1920 because we cannot observe individuals

born after 1911. While this is probably a minor issue for patents granted until 1930, it may induce some

selection of linked inventors for later patents. Patent data contain the name and surname of inventors,

their residence, and the issue year.

Given a patent 𝑝, define the set of inventors as A𝑝 = {𝐴1, . . . , 𝐴𝑛𝑝}. Most patents are solo-authored

in this period, meaning |A𝑝 | = 1. Call L𝑝 = {ℓ1, . . . , ℓ𝑚𝑝} the set of locations patent 𝑝 is associated to.

Each ℓ is a couple of latitude-longitude coordinates. Let Lparish
𝑝 be the set of parishes associated with

each coordinate. Analogously, let Ldistrict
𝑝 and Lcounty

𝑝 be the set of, respectively, districts and counties

where each coordinate locates. Notice that these are progressively coarser units: parishes are contained

in districts, which form counties. Unfortunately, we do not know the inventor-location pair. To match

the generic 𝐴𝑝, we thus perform the following operations:

1. With a slight abuse of notation, let Lparish
𝑝 —and, analogously, Ldistrict

𝑝 and Lcounty
𝑝 —denote the set

of census records in each parish, district, and county within the respective sets.

2. Take all entries 𝑖 within the set of parishes Lparish
𝑝 that are at least 18 when the patent 𝑝 is filed. Let

year𝑖 and 𝑡𝑝 respectively denote the birth year of 𝑖 and the issue date:

Mparish
𝐴𝑝

=

{
𝑖 ∈ Lparish

𝑝

��� 𝑡𝑝 − year𝑖 ≥ 18
}

(A.1)

3. For each 𝑖 ∈ Mparish
𝐴𝑝

, compute the distance between the name and surname of 𝑖, and that of 𝐴𝑝:

Similarity𝐴𝑝

𝑖
= 𝛼 × Name Similarity𝐴𝑝

𝑖
+ (1 − 𝛼) × Surname Similarity𝐴𝑝

𝑖
(A.2)

for some 𝛼 ∈ [0, 1]. In our baseline setting, we pick 𝛼 = .3 to assign a larger weight to the surname.

4. Define the set of acceptable matches as those with the highest similarity with the given 𝐴𝑝:

Mparish
𝐴𝑝

=

 𝑖 ∈ Mparish
𝐴𝑝

��� Similarity𝐴𝑝

𝑖
= max

𝑖′∈Mparish
𝐴𝑝

Similarity𝐴𝑝

𝑖′

 (A.3)

and define Similarity𝐴𝑝 as the similarity between all elements in Mparish
𝐴𝑝

and 𝐴𝑝. Notice that this

is the same across all 𝑖 ∈ Mparish
𝐴𝑝

.

5. Set a threshold 𝜏 such that if Similarity𝐴𝑝 < 𝜏, Mparish
𝐴𝑝

= ∅, otherwise pass.

6. If Mparish
𝐴𝑝

is not empty, then inventor 𝐴𝑝 is matched to all records in Mparish
𝐴𝑝

. If it is empty, repeat

steps 2–4 conditioning on records in Ldistrict
𝑝 . If Mdistrict

𝐴𝑝
is empty, repeat steps 2–4 conditioning on

records in Lcounty
𝑝 . If Mcounty

𝐴𝑝
is empty, repeat steps 2–4 without imposing geographical conditions

on records 𝑖. In the baseline setting, we only accept county-level and country-level matches if the

name and surname of the match(es) exactly match 𝐴𝑝’s.
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Patent data have the clear advantage that we have geographical information on the location of in-

ventors. Inventors are mobile, however, and there may be a considerable time between the moment the

patent is granted and the 1911 census. For these reasons, we incrementally exploit geographical infor-

mation on the inventor’s location. First, we look for high-quality matches within the same parish where

the patent is filed. Parishes are small, as their average population is less than 10,000. When a match

at the parish level is feasible, it is usually unique. We then progressively expand the set of records by

coarsening their geographic location. Districts are larger than parishes, and counties are, in turn, larger

than districts. If we cannot find one match at the county level, we look for one within the entire popu-

lation of England and Wales. Unlike the migrants sample, we do not have information on the birth year.

To ensure that county- and country-level matches are reliable, we require that their name and surname

are verbatim those recorded in the patent document.

A.3.2 Matching Statistics

In Figure A.5, we report the matching rate of this exercise. We focus on two matching rates: the gross rate

is the share of inventors that have at least one match, relative to the overall set of inventors; the net rate

is the share of inventors with at least one acceptable match, relative to the overall group of inventors. In

the analysis, a match is acceptable if (i) the similarity between name and surname is above 0.95 and (ii)

a given inventor has no more than five matches. Panel A.5a reports both margins over time. The gross

matching rate remains consistently above 80% throughout the period. The net matching rate, however,

rejects approximately 20% of the matches. This is mainly due to inventors linked to more than five cen-

sus records. This notwithstanding, the share of acceptable matches is approximately constant and above

60% each year. Our algorithm delivers satisfactory performance compared to standard linking rates in

the literature. In panel A.5b, we break down the number of matches by the geographical unit where

the match is attained. Blue, red, green, and yellow bars report the matching rates at the parish, district,

county, and national levels. The share of inventors matched with more than 20 census records is larger

at the national level; there, we look for possible matches with no information on the residence. Multiple

matches are somewhat common at the parish level as well. This is because we first try to match inven-

tors at the parish level. Hence parish matches represent the large majority of the linked sample, while

district-level matches are residual and, thus, more accurate. Figure A.6 displays the spatial distribution

of inventors, who are plotted using the geo-coded census coordinates described in the previous section.

A plausible concern is that the probability of obtaining a link is not random. This may be the case

if, for instance, more successful inventors were more educated and, hence, more likely to report their

names correctly in the census. On the other hand, if successful inventors were relatively more mobile,

we may fail at linking them because we may need to go national to obtain a match, which would most

likely be dropped because of the multiple-match issue. While these hypotheses are ultimately challeng-
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ing to test, in Table A.2, we compute the correlation between the number of matches in our sample and

a set of individual observed characteristics. In Panel A, we have age; in Panel B, we list the set of occu-

pational categories; in Panel C, we list the residence divisions. We find no clear association between the

number of matches and these variables in the overall sample (column 1) and across matches selected

by geographical layer (columns 2–5). Overall, we interpret the Table as conveying reassuring evidence

that the selection of inventors into the linked sample does not appear to systematically favor particular

groups.
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A.4 Tables

(1) (2) (3) (4) (5)

Mean Std. Dev. Min. Max. Observations

Panel A. Journal-Level Statistics

Number of Issues 2795.843 4959.740 1 46163 2022

First Publication Year 1869.746 44.171 1699 1996 2094

Last Publication Year 1910.692 49.470 1699 2009 2094

Publication Lifespan 40.946 40.490 0 273 2094

Publication Lifespan if English 40.993 41.921 0 273 1459

Publication Lifespan if Welsh 38.161 36.920 0 178 93

Publication Lifespan if Scottish 45.144 41.107 0 251 229

Publication Lifespan if Irish 41.336 34.809 0 170 241

Panel B. District-Level Statistics, by Decade

1870s 2.309 14.860 0 285 637

1880s 1.885 11.610 0 233 636

1890s 1.494 8.587 0 160 634

1900s 1.166 5.893 0 114 634

1910s 0.942 3.845 0 83 633

1920s 0.809 2.381 0 50 633

1930s 0.714 1.274 0 24 633

Panel C. District-Level Statistics, by Division

East 1.631 1.272 1 8 111

East Midlands 2.349 2.409 1 14 43

London 18.767 97.312 1 534 30

North East 2.079 1.761 1 8 38

North West 3.600 3.477 1 17 40

South East 1.800 1.271 1 6 100

South West 1.747 1.382 1 8 79

Wales 2.327 2.391 1 10 52

West Midlands 2.342 2.722 1 18 79

Yorkshire 2.186 2.201 1 10 59

Table A.1. Descriptive Statistics on Newspapers and Newspaper Coverage in the UK

Notes. This table reports descriptive statistics on newspapers active in the UK between 1850 and 1940. In Panel

A, figures are computed at the newspaper level; Panel B computes district-level statistics on the number of news-

papers by decade; Panel C computes district-level statistics on the number of newspapers by division. Panels B

and C only restrict the observation sample to English and Welsh districts. Newspapers were geo-coded to their

publishing address and assigned to districts based on their borders in 1900.

◀ Back: Appendix 1 – Data
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Overall Sample Parish Matches District Matches County Matches Nationwide Matches

(1) (2) (3) (4) (5)

Panel A. Demographics

Age 0.005 -0.018 -0.005 -0.014* 0.026***

(0.010) (0.021) (0.012) (0.007) (0.005)

Dependent Variable – Dummy = 1 if Matched Inventor is in:

Panel B. Occupation

Agriculture 0.123* 0.272** 0.073*** 0.000 0.028**

(0.073) (0.129) (0.019) (0.016) (0.011)

Chemicals -0.010*** -0.019*** -0.012* -0.011*** -0.005***

(0.004) (0.005) (0.006) (0.004) (0.001)

Construction -0.015 -0.032 0.006 0.010 -0.001

(0.016) (0.031) (0.008) (0.017) (0.002)

Engineering -0.018 -0.042* -0.017** -0.007 0.004

(0.012) (0.025) (0.007) (0.007) (0.003)

Liberal Professions -0.014*** -0.016*** -0.003 -0.018*** -0.019***

(0.005) (0.006) (0.010) (0.002) (0.005)

Metallurgy -0.020 -0.031 0.018 -0.015 0.004**

(0.013) (0.019) (0.019) (0.019) (0.002)

Other Manufacturing -0.024* -0.042** -0.027 0.005 -0.007**

(0.012) (0.018) (0.016) (0.007) (0.003)

Public Administration -0.009 -0.017 -0.014 -0.015 -0.008**

(0.008) (0.014) (0.010) (0.011) (0.003)

Textiles -0.013 -0.042* 0.002 0.058*** 0.003

(0.012) (0.026) (0.024) (0.013) (0.005)

Trade -0.031*** -0.044*** -0.038*** -0.021* -0.025***

(0.011) (0.016) (0.007) (0.011) (0.005)

Transport -0.008 -0.025 0.001 0.006 0.003

(0.014) (0.026) (0.008) (0.011) (0.003)

Utilities -0.013*** -0.020*** -0.031*** -0.016*** -0.007*

(0.004) (0.005) (0.005) (0.006) (0.004)

Panel C. Division of Residence

East -0.004 -0.059 -0.061 -0.074 -0.010

(0.015) (0.067) (0.065) (0.089) (0.011)

East Midlands 0.004 -0.061 0.070 -0.055 0.012

(0.012) (0.070) (0.102) (0.066) (0.013)

London -0.048 -0.039 -0.053 -0.008 -0.025

(0.069) (0.173) (0.053) (0.079) (0.022)

North East 0.028 -0.045 -0.041 -0.060 0.016

(0.031) (0.052) (0.049) (0.072) (0.016)

North West -0.057 -0.165 -0.069 0.195*** 0.012

(0.050) (0.167) (0.080) (0.056) (0.013)

South East -0.024 -0.050 -0.106 -0.118 -0.028

(0.030) (0.057) (0.106) (0.136) (0.027)

South West 0.001 -0.025 -0.049 -0.051 -0.019

(0.008) (0.029) (0.054) (0.062) (0.020)

Wales 0.233 0.469** 0.540*** -0.026 0.046

(0.187) (0.212) (0.137) (0.032) (0.046)

West Midlands -0.049 -0.102 -0.104 -0.130 0.004

(0.050) (0.112) (0.103) (0.148) (0.007)

Yorkshire 0.005 -0.021 -0.029 0.008 -0.003

(0.013) (0.025) (0.032) (0.021) (0.007)

Decade FE Yes Yes Yes Yes Yes

Table A.2. Correlation Between Inventors’ Characteristics and Number of Matches

Notes. This table reports the correlation between inventor-level variables observed in the UK census and the

number of matches in the linked sample. In column (1), the sample is the entire linked dataset. We restrict to

matches at the parish (column 2), district (column 3), county (column 4), and national level (column 5). The Table

reports standardized beta coefficients for comparability. Regressions include decade fixed effects. Standard errors

are clustered at the division level and are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.

◀ Back: Appendix 1 – Data
Appendix A – Page 11



Sector Technology Class Tariff Rate Before S-H Tariff Rate After S-H Change in Tariff Treated

(1) (2) (3) (4) (5) (6)

Agricultural products and provisions Agriculture 23.059 40.204 74.352 Yes

Chemicals, oils, and paints Chemistry 29.577 40.195 35.900 No

Cotton Manufactures Textiles 34.876 44.764 28.352 No

Earths, earthenware, and glassware Personal Articles, Furniture 47.321 53.049 12.106 No

Flax, hemp, and jute, and manufacture thereof Textiles 18.948 26.104 37.766 No

Metals, and manufacture thereof Metallurgy 34.534 36.803 6.572 No

Pulp, paper, and books Printing 25.652 25.591 -0.239 No

Silk and silk goods Textiles 55.768 58.115 4.208 No

Spirits, wines, and other beverages Food 37.298 59.007 58.226 Yes

Sugar, molasses, and manufactures thereof Food 68.971 110.022 59.519 Yes

Sundries Personal Articles, Furniture 38.149 36.587 -4.096 No

Tobacco, and manufactures thereof Agriculture 58.176 81.636 40.326 No

Wood, and manufactures thereof Building 23.727 20.672 -12.875 No

Wool, and manufactures thereof Textiles 49.344 78.255 58.591 Yes

Table A.3. List of Industries By Tariff Rate, 1925–1935

Notes. This table reports the US tariff rate applied to the categories listed in the Statistical Abstracts of the United

States. Column (1) reports the listed sector; column (2) maps the sector to technology classes in our baseline taxon-

omy; columns (3) and (4) report the tariff rate applied, respectively, before and after the Smoot-Hawley Act (1930).

Tariff rates before the Act are averages in the five years before the reform (1925–1929); tariff rates after the Act

are averages in the five years posterior to the reform (1930–1935). Column (5) computes the change in the tariff

rates. In column (6), we list the technology classes we considered targeted by the Act, namely, those whose tariff

rate increase exceeded 50%. Data are digitized from the 1935 Statistical Abstracts of the United States.

◀ Back: Appendix 1 – Data ◀ Back: Appendix 4 – Additional Results
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A.5 Figures

(a) Unweighted Geo-coding Ratio (b) Population-Weighted Geo-coding Ratio

Figure A.1. Spatial Distribution of the Share of Geo-coded Addresses in the UK Population
Censuses, 1851–1911

Notes. These figures report the spatial distribution of the share of geo-referenced addresses from the UK censuses,

1851–1911. For each census, we obtain a list of more than five million addresses by fine geographical unit (i.e.,

parishes). We then geo-reference these addresses to precise geographical coordinates. Panel A.1a reports the

district-level share of successfully geocoded addresses. In Panel A.1b, we weigh each address by the number of

people reported to live in that address. The performance of the geo-referencing algorithm is relatively poor in

Wales because addresses there are often reported in Welsh.

◀ Back: Appendix 1 – Data
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(b) 1861 Census
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(c) 1881 Census
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(d) 1891 Census
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(e) 1901 Census
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(f) 1911 Census

Figure A.2. Distribution of the Share of Geo-coded Addresses by Census

Notes. These figures display the district-level distribution of the share of geo-coded addresses from the UK cen-

suses (1851–1911) by decade. For each census, we obtain a list of more than five million addresses by fine ge-

ographical unit (i.e., parishes). We then geo-reference these addresses to precise geographical coordinates. The

black-contoured bars report the crude geo-coding rate; the blue bars report the population-adjusted geo-coding

rate. Each figure reports the average and standard deviation of the two distributions.

◀ Back: Appendix 1 – Data
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Figure A.3. Number of Active Newspapers Over the Period 1880–1940, by District

Notes. This figure reports the spatial distribution of the number of active newspapers across districts over the

period 1880–1940. To be included in the data, a publication must be active for at least one year between 1880

and 1940. To retrieve the location of each journal, we geo-reference its publishing address and overlay historical

district boundaries to assign it to consistent 1900 districts. The publishing address only lists the city. Hence we

cannot distinguish across the eleven London urban districts. We consequently dissolve these districts into a single

“London” unit.

◀ Back: Data ◀ Back: Appendix 1 – Data

Appendix A – Page 15



Figure A.4. Distribution of Districts Connected to the UK Telegraph Network in 1862

Notes. This figure reports the spatial distribution of telegraph stations across districts in 1862. Red markers display

the location of telegraph stations. Districts without any telegraph station are displayed in dark blue. To retrieve the

coordinates of each telegraph station, we geo-reference the city where it is located. The list of telegraph stations

is taken from the Zeitschrift des Deutsch-Österreichischen Telegraphen-Vereins, Jahrgang, volume IX, 1862. This

source does not list telegraph stations in London. We thus dissolve urban districts in the London area into a single

“London” unit and assume that this unit is connected to the domestic telegraph network.

◀ Back: Data ◀ Back: Appendix 1 – Data
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Figure A.5. Matching Rate of the Linked Inventors-Census Sample, 1881–1911

Notes. These figures report the matching rate for the linked inventor-census sample. Panel A.5a reports the match-

ing rate over time for the 1881–1900 sample (blue bars) and the 1901–1920 sample (red bars). Color-contoured bars

report the share of records with at least one match; color-filled bars report the share of acceptable linked matches.

A record match is acceptable if it has no more than five multiple matches. Panel A.5b reports the share of matches

by the number of matches, broken down by geographical layers. In Panel A.5a, we do not show the few matches

with quality below .95. In Panel A.5b, the sample is restricted to records with at least one match.

◀ Back: Appendix 1 – Data

Appendix A – Page 17



Figure A.6. Distribution of Inventors Across UK Districts, 1881–1911

Notes. This figure displays the spatial distribution of inventors across districts between 1881 and 1911. Each

marker reports one inventor, defined as an individual who obtains at least one patent over the sample period.

To retrieve the coordinates of the inventors, we first link population censuses, whose entries are, in turn, geo-

referenced. The background map displays districts at historical borders in 1900.

◀ Back: Appendix 1 – Data
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B Novel Patent Data

B.1 Sources and Digitization

This section presents the motivation for developing a new patent dataset for England and Wales that

spans the second half of the XIX century. Then, we describe the sources we use and how we structure

the textual data they contain into a machine-usable dataset. Finally, we describe two data-augmentation

routines that we perform to geocode the patents and assign them a modern technology class.

B.1.1 Motivation

Despite its historical significance, we lack comprehensive patent data for the Second Industrial Revo-

lution period (1850–1900) in the United Kingdom. In particular, it is impossible to reconstruct the geo-

graphical distribution of innovation activity during this period. This data limitation sharply contrasts the

effort undertaken to document patenting activity since the inception of the English patent law in 1617 up

until the end of the First Industrial Revolution in the 1840s (Nuvolari and Tartari, 2011; Nuvolari et al.,

2021). We fill this gap by constructing the first dataset of English and Welsh patents that spans the pe-

riod 1853–1900 and contains detailed information on the text, geographical location, inventors’ personal

information, and date for the universe of patents.

B.1.2 Data Sources

The UK Intellectual Property Office allowed us access to restricted full-page scans of original patent doc-

uments. These are the universe of patents granted in England and Wales between 1617 and 1899. This

paper focuses on the period 1853-1899 for two main reasons. First, Nuvolari and Tartari (2011) already

digitized patents before 1853 from Bennet Woodcroft’s index, although patent documents contain ad-

ditional information compared to the index. Second, in 1853 a reform dramatically lowered patent

application prices. This makes it challenging to compare patents before and after the reform. Patent

documents contain a wealth of unstructured information. We provide two examples in Figure B.1: in

panel B.1a we show the patent granted to Henry Bessemer for the eponymous process to produce steel,

and in panel B.1b we display the patent granted to John Starley for the first modern safety bicycle. Both

patents are in our dataset. The rectangles identify the location of the textual data that we extract. These

comprise (i) a short title, (ii) a long title, (iii) the author(s)’s name(s), (iv) the author(s)’s address(es), (v)

the author(s)’s profession(s), (vi) the filing date, (vii) the issue date, (viii) the type of protection, (ix) an

indicator of whether the application was filed by an agent on behalf of someone living abroad, and (x)

the full text of the patent. Not all (i-x) are available throughout the sample. In particular, (i), (vi), and

(viii) are available only until 1873. After that date, a short title is no longer reported, the filing date is

reported only sporadically, and the type of protection becomes immaterial, for only granted patents are
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included in the sample.

B.1.3 Digitization

We perform optical character recognition (OCR) on each patent individually to structure the data in a

machine-readable dataset. To ensure state-of-the-art performance, we OCR the first page of each docu-

ment, where all the (i–ix) variables are located, using Amazon’s commercial textract engine. To retrieve

the rest of the text, which is not used in this paper, we use the open-source engine tesseract. An OCR-ed

document is a text file. To extract the relevant variables, we implement a script that leverages regular

expressions to identify the variables (i–ix). Fortunately, the text of each patent is fairly standardized;

hence this routine yields detailed and high-quality results for all variables except (v), which is not used

in this paper. This exercise results in a database of approximately 800,000 patents granted between 1853

and 1899.

B.1.4 Geo-Coding

To retrieve each patent’s location, we geocode each inventor’s listed address using the commercial geocod-

ing engine provided by MapTiler AG. To geocode an address, if a coarse geographical unit is listed on the

patent (e.g., the county), we condition the outcome coordinates to lie within that unit. In Figure B.4, we

report the resulting distribution of patents (panel B.4a) and patents per capita (panel B.4b). Reassuringly,

these are consistent with underlying population and economic development indicators.

B.1.5 Technology Class Assignment

Naturally, historical patent documents do not list CPC classes. Yet, the technological classification is a

key variable in our empirical exercise. To reconstruct the class, we adopt a supervised machine-learning

approach. We conjecture, following Xu (2018), that titles are informative of technological classes. We split

the PATSTAT data, which covers the years 1900–1939 and for which we observe both titles and classes, in

a train and a test set, with a proportion of 4:1. We apply a term frequency-inverse document frequency

vectorization algorithm to the titles of both datasets. Then, we estimate a linear support vector machine

(LSVC) on the train set. An LSVC is a non-probabilistic classifier that assigns class labels to maximize the

width of the gap between classes. Formally, consider a set of points (x𝑖 , 𝑦𝑖)𝑁𝑖=1 wherex ∈ ℜ𝑁 represent the

features—in our case, words—and 𝑦 is the class. For simplicity, assume 𝑦 ∈ Y = {−1, 1}. An LSVC solves

for the hyperplane W = {w ∈ ℜ𝑁 s. t.w⊺x𝑖 − ℓ = 0} that maximizes the distance between the group 𝑖

such that 𝑦𝑖 = 1, and the group where 𝑦𝑖 = −1. The distance that is most commonly used that allows for

non-linearly separable data is the hinge loss, which is defined as 𝑑𝑖 = max {0, 1 − 𝑦𝑖 (w⊺x𝑖 − ℓ)}. In our

case, however, we allow for multiple classes, that is, the cardinality of Y be more than two. We employ

an LSVC because the literature notes that it yields particularly robust results. However, the classification
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outcome would remain fairly unchanged using different algorithms.61

On the training set, the LSVC yields a 95% accuracy, measured as the share of patents with a cor-

rectly imputed class relative to the total number of patents. This decreases to 85% on the test set, which

is not used to train the algorithm. Given that state-of-the-art models trained on modern US data achieve

approximately a test 90% accuracy, we interpret these results as rather encouraging (Li et al., 2018). We

report the confusion matrix on the test set in Figure B.2. For a given cell, the row label is the true tech-

nology class, and the column label is the imputed class. A perfect classifier would thus yield a diagonal

confusion matrix. Overall, we find that misclassification errors are evenly distributed, in relative terms,

across classes. Hence, even though the classifier is not perfect, there does not seem to be any systematic

measurement error in class imputation.

B.2 External Validation

To validate our data, we consider the only two series that cover—a portion of—the years 1853–1899. Han-

lon (2016) digitized an index of patents issued between 1855 and 1883. His data list, for each patent, the

inventor(s) and their profession(s), a technology class, and the issue year. On top of the longer time cov-

erage, our data thus contain several additional information, including the geographical coordinates. The

second dataset that we use as a comparison is the “A Cradle of Invention” (COI) series, published by Fin-

ishing Publications (2018). These data, too, were digitized from indices and thus only list authors, issue

year, and, often, titles. In principle, this series spans the years 1617–1895. However, after 1883 patent

applications that were eventually denied protection are also listed. Absent a way to identify granted

patents, we do not report figures after 1883 for the COI series.

In Table B.1, we report the aggregate number of patents issued according to our series (columns 2

and 6), COI (columns 3 and 7), and Hanlon (2016) (columns 4 and 8). Reassuringly, the three series are

highly consistent. Our series is closest to Hanlon (2016), but the COI figures are not too far off either.

Overall, the Table strongly suggests that our series is as complete as the Hanlon (2016) database. We

cannot, however, externally validate it for the later part of the period because there is no data available.

B.3 Measuring Pairwise Similarity Between US and UK Patents

In this section, we describe in detail how we construct the patent similarity metric we adopt to measure

“copying” and “originality” of UK innovation activity. The approach borrows heavily on Kelly et al. (2021).

We adapt their methodology to our context by leveraging text information contained in titles only. Even

61In particular, we tested the Naïve Bayes classifier, several Boosting algorithms (e.g., AdaBoost, XGBoost), a random forest clas-

sifier, and a simple convolutional neural network. All the above yield similar classification results but slightly lower accuracy

than the LSVC. Additionally, we explored alternative vectorization algorithms using transformers (e.g., BERT and RoBERTa)

with no significant performance gains.
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though we do not have access to full US patent texts, the title of a patent is usually very informative about

its content. In fact, we previously showed that a title-based machine learning algorithm predicts the

technological classification of the patent with nearly 90% accuracy. Titles for UK patents are embedded

in the digitized text for the period 1870–1899 and are collected from PATSTAT for the later years; titles

for US patents are collected from PATSTAT throughout the sample period.

We start by defining the backward inverse-document frequency associated with each word 𝑤. This

expresses the inverse frequency with which the word 𝑤 appears in US patents 𝑝 issued until year 𝑡.

Formally, we have

BIDF𝑤,𝑡 ≡ log
(

Number of Patents Issued Before 𝑡

1 + Number of Patents Issued Before 𝑡 that contain word 𝑤

)
(B.1)

Then, to each patent-word pair, we associate the term frequency variable that counts the number of

instances word 𝑤 appears in patent 𝑝, normalized by the length of the patent. With a slight abuse of

notation, let 𝑝 denote both the index of the patent and the set of words it contains. We shall have

TF𝑤𝑝 ≡
∑

𝑐∈𝑝 1(𝑐 = 𝑤)∑
𝑐∈𝑝 1(𝑐)

(B.2)

where the numerator returns how many times word 𝑤 appears in patent 𝑝, and the denumerator is

simply the number of words in patent 𝑝. Then, we define the TF-BIDF associated with word 𝑤, patent 𝑝

at time 𝑡 as the product between these two terms:

TF-BIDF𝑤𝑝,𝑡 ≡ TF𝑤𝑝 × BIDF𝑤,𝑡 (B.3)

and, thus, the vector TF-BIDF𝑝,𝑡 collects the term frequency-backward inverse document frequency for

all words 𝑤 in 𝑝. For comparability, the vector TF-BIDF𝑝,𝑡 is normalized by its norm to have unit length.

We compute the TF-BIDF𝑝,𝑡 vectors for US and UK patents, but the BIDF𝑤,𝑡 are computed on the corpus

of US patents only. Then, we compute the cosine similarity 𝜌𝑖, 𝑗 between each UK patent 𝑖 and each US

patent 𝑗. This allows us to define two variables. First, we seek to measure the similarity between British

innovation and previous American patents. This yields a measure of backward similarity that, for the

sake of the narrative of the paper, we define as “copying”. Formally we define

Backward Similarity𝜏𝑖 ≡
∑︁
𝑗∈F−𝜏

𝑖

𝜌𝑖, 𝑗 (B.4)

where the set F −𝜏
𝑖

denotes the set of US patents issued within 𝜏 years from the issue year of patent 𝑖.

This measures the degree of similarity between a given patent in the UK and previous patents in the

US. Second, we define a measure of “originality” of UK patents compared to previous US patents. This

leverages the insight of Kelly et al. (2021), who suggest that innovative and influential patents are those

that are most dissimilar from existing innovation, while at the same time retaining semantic proximity
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with subsequent patents. Formally, we have

Excess Forward Similarity ≡

∑
𝑗∈F+𝜏

𝑗
𝜌𝑖, 𝑗∑

𝑗∈F−𝜏
𝑖

𝜌𝑖, 𝑗
(B.5)

where F +𝜏
𝑖

denotes the set of US patents issued within 𝜏 years after the issue year of patent 𝑖. In the

baseline analysis, we set a symmetric window of 𝜏 = 5 years around each patent’s issue date. In Table

E.10 we report the results using an alternative threshold of ten years. Moreover, in the same table, we

report the results obtained by netting out year and technology class fixed effects at the patent level. As

noted by Kelly et al. (2021), this ensures that we do not conflate shifting terminology fashions in the

similarity measures.

B.4 Summary Statistics and Stylized Facts

We conclude this section by presenting some stylized statistics and facts our new data allow us to uncover.

First, as noted in Table B.1, the number of patents granted generally grows over time, although at a

somewhat stagnating path. There is, however, a sizable discontinuity between 1883 and 1884, when the

number of patents jumps from 6074 to 9873. In 1883 the Patents Act reduced application fees by 83%, as

noted by Nicholas (2014). It seems plausible to attribute the discontinuity to this reform.

Second, in Figure B.3, we report the composition of patenting activity by technology class. In each

year, we compute the share of patents in a given sector with respect to the total number of patents is-

sued that year. We report such shares over time between 1853 and 1939. The composition of innovation

exhibits two clear patterns. First, the share of textiles patents, which in the 1850s represented nearly

20% of the total, shrinks considerably, and in 1939 it accounts for less than 5%. This is consistent with

the historical preeminence of textiles during the First Industrial Revolution and their subsequent loss of

importance. Second, electricity-related innovation grows considerably in the later part of the period. In

1939, it represented more than 20% of the total number of patents issued. Once more, this echoes his-

torical, anecdotal evidence highlighting the centrality of electricity during the later stages of the Second

Industrial Revolution and beyond (David, 1990; Mokyr, 1998).

Finally, a crucially novel component of our dataset is that it allows studying the geographical dimen-

sion of the innovation process. Thus, in Figure B.4, we report the spatial distribution of the number of

patents in absolute number (panel B.4a) and normalized by population (panel B.4b). These maps attest

to the importance of duly considering the geography of innovation. The patenting activity appears to be

widely dispersed across England and Wales. Heavily industrial areas, such as Lancashire, the Midlands,

the Tyne, and South Wales, all feature prominently in terms of issued patents. Similarly, the London

area is also a major innovation hub. By contrast, Northern Wales, Anglia, Cornwall, and Cumbria per-

form poorly. In Figure B.5, we repeat this exercise, but we break down the number of patents by selected

technology classes: chemistry (panel B.5a), electricity (panel B.5b), engineering (panel B.5c), engines and
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pumps (panel B.5d), metallurgy (panel B.5e), and textiles (panel (panel B.5f). While innovation centers

remain roughly similar across sectors, some differences emerge. For example, the metallurgy indus-

try was particularly deep-rooted in the Midlands, where we note the largest concentration of metallurgy

patenting. Similarly, textile innovation centers in the Lancashire area, the historic “cotton districts”. Our

database allows studying a novel, thus far largely unexplored dimension of the innovation and patenting

activity. Therefore, the analysis carried out in this paper is one of many that may take advantage of this

contribution.
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B.5 Tables

Years 1853-1876 Years 1877-1899

(1) (2) (3 (4) (5) (6) (7) (8)

Year Our Series COI Hanlon Year Our Series COI Hanlon

1853 3042 3016 1877 4943 4928 4940

1854 2759 2690 1878 5336 5143 5333

1855 2960 2866 2955 1879 5332 5305 5325

1856 3107 2967 3102 1880 5499 5132 5509

1857 3206 3092 3197 1881 5744 5620 5745

1858 3023 2954 2999 1882 6159 6150 6233

1859 3048 2989 2998 1883 6074 6006 5981

1860 3192 3139 3190 1884 9873

1861 3261 3269 3272 1885 8783

1862 3482 3459 3486 1886 8999

1863 3301 3299 3308 1887 9218

1864 3256 3225 3257 1888 9331

1865 3378 3364 3378 1889 10325

1866 3451 3408 3452 1890 10355

1867 3724 3692 3720 1891 10686

1868 4008 3908 3984 1892 11429

1869 3832 3741 3781 1893 11985

1870 3407 3288 3405 1894 11648

1871 3525 3479 3525 1895 12198

1872 3969 3940 3967 1896 13597

1873 4276 4281 4282 1897 14249

1874 4494 4516 4491 1898 13100

1875 4557 4451 4557 1899 13172

1876 5049 5012 5064

Table B.1. Total Number of Patents Granted in the UK: Comparison Across Three Datasets

Notes. This table reports the total number of patents in England and Wales between 1853 and 1899. Columns

(2) and (6) report the series constructed from our novel dataset; columns (3) and (7) tabulate data from A Cradle

of Inventions (Finishing Publications, 2018); columns (4) and (8) report data from Hanlon (2016). The A Cradle

of Inventions series potentially stretches until 1899. However, after 1883 there is no way to distinguish between

patents granted and applications. Hence we do not report figures for these later years (Nicholas, 2014). Data from

Hanlon (2016) only cover the years 1855–1883.

◀ Back: Appendix 2 – Patents
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B.6 Figures

(a) Henry Bessemer’s 1856 Patent (b) John K. Starley’s 1885 Bicycle Patent

Figure B.1. Sample Annotated Patent Documents: the Bessemer Process and the First Mod-
ern Safety Bicycle

Notes. This figure displays two sample patent documents in our dataset. Panel B.1a was granted to Henry Bessemer

in 1856 for the invention of the famous eponymous process for the mass production of steel from the molten pig

iron. Panel B.1b was granted to John Starley in 1885 for the invention of the first modern bicycle, which would soon

revolutionize mobility in Europe and in the US. Colors mark different variables that we structure in the dataset: (i)

in brown, the short title; (ii) in red, the complete title (iii) in green, the type of protection granted; (iv) in blue, the

author(s) name(s); (v) in yellow, the author(s)’s address(es); (vi) in light blue, the application date; (vii) in purple,

the issue date; (viii) in black, the patent text that continues in the rest of the patent document; (ix) in dark purple,

the author(s) profession(s). Not all (i–ix) data are available on every patent and in each year.
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1 41 15 55 1975 105 0 11 37 36 6 62 4 3 100 62 19 151

1 5 13 43 80 2113 0 2 31 47 2 5 0 10 10 40 1 59
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3 19 28 304 76 43 11 48 4148 69 23 93 78 14 40 115 17 92
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2 5 85 18 14 6 0 9 26 39 1565 18 8 17 58 37 5 14
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20 61 119 47 111 13 11 19 51 35 52 121 55 26 3737 143 57 70

16 51 24 38 73 36 37 25 92 24 21 102 60 22 116 3736 100 97

4 10 102 11 18 5 4 5 11 6 4 82 27 12 54 40 2898 4

14 59 4 88 149 42 0 5 50 59 3 55 1 1 36 60 4 3863

Figure B.2. Confusion Matrix of the Technology Sector Classifier

Notes. This figure displays the confusion matrix of the patent technology classifier. The algorithm assigns to each

patent an imputed technology class using information contained in the title. Titles undergo pre-processing and

term frequency-inverse document frequency (tf-idf) vectorization. The classifier is trained on an 80% sub-sample

of the universe of British patents granted over the period 1900–1940. The figure reports the classifier’s perfor-

mance on the remaining 20% test set, which is not used in training. The 𝑦-axis reports the true patent class; the

𝑥-axis reports the class imputed by the classifier. A perfect classifier would yield a diagonal confusion matrix. The

accuracy in the training (resp. test) set is ≈98% (resp. ≈85%). Lighter to darker blue indicates an increasing num-

ber of patents in the cell.
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Figure B.3. Composition of Total Patents Granted in the United Kingdom Across Technol-
ogy Classes, 1880–1939

Notes. This figure displays the evolution of innovation in Britain across technology classes from 1853–1939. For

each year, we compare the share of patents in each class in our database relative to the total number of patents

granted in that year. Data for the period 1853–1899 are from the newly digitized universe of patents; data for the

period 1900–1939 are made available by the European Patent Office repository.
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(a) Number of Patents (b) Patents per Person

Figure B.4. Distribution of Patents and Patents per Capita Across Districts, 1880–1939

Notes. These figures report the intensity of patenting activity across districts over the period 1880–1939. Panel

B.4a reports the total number of patents granted; Panel B.4b normalizes this by district population in 1900 and

expresses the resulting rate in ‰ units. Districts are displayed at 1900 borders. To assign patents to districts, we

geo-reference the address of each author listed in the patent document and assign districts based on historical

district borders.
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(a) Chemistry (b) Electricity (c) Engineering

(d) Engines, Pumps (e) Metallurgy (f) Textiles

Figure B.5. Distribution of the Total Number of Patents Granted Across Districts and Se-
lected Technology Classes, 1880–1939

Notes. These figures report the intensity of patenting activity across districts over 1880–1939 for selected technol-

ogy classes. Districts are displayed at 1900 borders. To assign patents to districts, we geo-reference the address of

each author listed in the patent document and assign districts based on historical district borders.
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C Linked International Migrants Sample

This section discusses our methodology to link English and Welsh immigrants in the US to the UK census

and presents key statistics on the resulting dataset.

C.1 Sources and Linking Algorithm

We rely on two sources of externally compiled data.62 For the US, we have access to the IPUMS full-count

non-anonymized census (Ruggles et al., 2021). A census was taken in the US every ten years starting in

1790, except for 1890. Until 1840, the census was run at the household level. From 1850 on, instead, we

have detailed individual information on the universe of the US population.63 For confidentiality, these

data are available up until 1940. Our dataset, therefore, contains snapshots of the entire US population

at any given decade between 1850 and 1940, although for the sake of this paper, we restrict to the years

1870-1930. Crucially, we have access to the non-anonymized version of the IPUMS data. Hence, besides

publicly available information, we also know each individual’s recorded name and surname.

In the UK, the I-CeM data mirrors the IPUMS (Schurer and Higgs, 2020) content. More precisely, it

contains information on the universe of people living in England, Scotland, and Wales. Similarly to the

US—and virtually every other—census, it was run at decade frequency starting in 1851 and until 1911.

No census was taken in 1871. As with the IPUMS data, we can access the full-count non-anonymized

version of the dataset. Besides publicly available information, this contains full names and addresses of

the universe of individuals living in the UK at any given decade.

Our methodology relies on Abramitzky et al. (2021). This dataset tackles the problem that neither

the US nor the UK—nor any other European countries—recorded where British immigrants came from

within the UK. We thus try to match British immigrants residing in the US with their entry in the UK

census, which records where they come from at a granular geographical level.64 More precisely, we take

the stock of British residing in the US in a given census year—say, 1900—and match them with their

entry in the preceding UK census—in this case, 1891.65 This implies that we measure the flow of British

immigrants over time rather than their stock.

We use three variables to link individuals: first name, surname, and birth year. The baseline sample

we link consists of individuals who report, in the US census, either England or Wales—or analogous

62We are deeply thankful to IPUMS and I-CeM for allowing us access to their confidential data. Without their help, this paper

would not have been possible.
63By US population, we refer to the universe of individuals who lived in the US at a given point in time.
64Since women usually change their name upon marriage, we are unable to match them. This is a common problem in linking

algorithms (Abramitzky et al., 2021).
65Since no census was taken in the UK in 1871, we link the 1880 US census to the 1861 UK one. This is not overly problematic

because we can still match all those aged ten or older in 1871.
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denominations, such as Great Britain—as their country of origin. In the 1900 census, we take all those

who immigrated between 1870 and 1899. In the subsequent censuses, until 1930, we retrieve stock of

those who immigrated in the preceding decade. Then, to match each unit in the sample—call the generic

one 𝐴—to an entry in the UK census, we perform this sequence of operations:

1. Take the census that precedes the immigration year of 𝐴. Hence, for instance, we match all those

who immigrated in 1896 to the 1891 census.

2. Select all records in that census with the same reported birth year as 𝐴—call the resulting sample

M𝐴 = {𝑚𝐴
1 , . . . , 𝑚

𝐴
𝑁 }.

3. Compute a string-similarity measure between the name and surname of 𝐴 and that of all elements

of M𝐴. In other words, for every 𝑚𝐴
𝑖
∈ M𝐴, compute66

Similarity𝐴
𝑖 = 𝛼 × Name Similarity𝐴

𝑖 + (1 − 𝛼) × Surname Similarity𝐴
𝑖 (C.1)

for some 𝛼 ∈ [0, 1]. In our baseline setting, we set 𝛼 = 0.3 to give higher weight to the surname.

4. The set of matches is defined as

M𝐴
=

{
𝑚𝐴

𝑖 ∈ M𝐴
�� Similarity𝐴

𝑖 = max
𝑚𝐴

𝑖′ ∈M
𝐴

Similarity𝐴
𝑖′

}
(C.2)

which means that we restrict the set of possible matches to include only those whose similarity

score with the entry in the US census 𝐴 is the largest.

5. Finally, for a given threshold 𝜏 > 0, we select only the possible matches whose similarity score is

above 𝜏. The set of effective matches thus boils down to:

M̃𝐴
𝜏 =

{
𝑚𝐴

𝑖 ∈ M𝐴
��� Similarity𝐴

𝑖 ≥ 𝜏
}

(C.3)

Clearly, M̃𝐴 can ideally be empty, meaning that 𝐴 has no effective matches. It can have one ele-

ment, in which case we refer to it as a “perfect match,” or it can have multiple matches. In our

baseline exercise, we set 𝜏 = 0.7 as we see a clear elbow in the distribution of similarities there.

We evaluate the distance between two strings 𝑖 and 𝑗 in terms of their Jaro-Winkler similarity 𝑑𝑖 𝑗 :

𝑑𝑖 𝑗 ≡ 𝑑𝑖 𝑗 + ℓ𝑝(1 − 𝑑𝑖 𝑗) (C.4)

where

𝑑𝑖 𝑗 ≡


0 if 𝑚 = 0

1
3

(
𝑚
|𝑖 | +

𝑚
| 𝑗 | +

𝑚−𝑡
𝑚

)
else

(C.5)

66We cannot simply match on exact same name and surname because coding errors are commonplace in historical census data

(Abramitzky et al., 2021).
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where 𝑚 is the number of matching characters, |𝑖 | is the length of string 𝑖, and 𝑡 is half the number of

transpositions, ℓ is the length of common an eventual common prefix no longer than four characters

between 𝑖 and 𝑗, and 𝑝 = 0.1 is a constant scaling factor. Two characters are matching only if they are

the same and are not farther than
⌊
max( |𝑖 | , | 𝑗 | )

2

⌋
− 1. Half the number of matching characters in different

sequence order is the number of transpositions.67

The Jaro-Winker distance has been shown to perform well in linking routines (Abramitzky et al.,

2021). In our particular case, however, this metric outperforms more standard string dissimilarity met-

rics, such as the cosine or the Levenshtein distances, because the Jaro-Winkler assigns a “bonus” score to

strings starting with closer initial substrings. In addition, coding errors are far more frequent at the end

of names and surnames than at the beginning. A manual assessment confirmed that the Jaro-Winkler

metric outperforms other measures in our setting.

C.2 Internal and External Validation

C.2.1 Matching Statistics

We now present key statistics on the dataset that we assemble. In Figure C.1, we report the matching

rate by the number of matches (panel C.1a) and over time (panel C.1b). The matching rate is the ratio

between the number of matched individuals and the number of English and Welsh immigrants in the

US census. We break down the matching rate by the number of matches every immigrant is associated

with. About 40% of the overall immigrant population is matched to one single record in the UK census.

Another 10% is matched to two records, and the remaining 50% is matched to three or more records

in the UK census. By construction, we can never match someone not appearing in the UK census. This

is possible if a child born in, say, 1895 emigrates before 1901, which is the closest subsequent census.

In Figure C.1a, we report a corrected matching rate whose denumerator removes these “unmatchable”

observations. Overall, 55% of the total number of English and Welsh immigrants is matched to no more

than two records in the UK census. This constitutes the baseline sample that we analyze. A 55% matching

rate is consistent with standard historical linking algorithms (Abramitzky et al., 2021), although a more

precise quantitative assessment is complex because the benchmark statistics refer to intergenerational

census linking exercises.

In panel C.1b, we report the matching rate by immigration year. In blue, we report the total number

of immigrants; those paired with at least one match are shown in red; the green area reports our baseline

sample, which is composed of all those immigrants with no more than two matches. We also impose a

quality threshold on names and surnames. Suppose an immigrant is matched to someone born in the

67The Jaro-Winkler distance has been recently employed in the economic history literature for intergenerational linking purposes

by, among others, Abramitzky et al. (2021)
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same year. In that case, we require both the name and the surname to have a similarity above .85. If

an immigrant is matched to someone born either one year before or one year after, we impose a stricter

threshold of .9 on both name and surname. We set high thresholds because we are concerned about false

positive matches. Following Abramitzky et al. (2021), we are thus willing to give up on power to maximize

accuracy. In Figure C.2, we report the overall distribution of name (panel C.2a) and surname (panel

C.2b) match quality. The solid and dashed red lines superimpose the aforementioned coarse and strict

thresholds. The quality distribution is substantially skewed to the right: most matches are of excellent

quality. Dropping low-quality ones is, therefore, quantitatively second-order.

Since we match immigrants to the UK census before their migration year, the matching rate de-

creases over a decade. This is clear from the black line in Figure C.1b, which jumps up at the turn of each

decade until 1911. The matching rate before 1881 is relatively low. This is because no census was taken

in the UK in 1871. Therefore, we match all those who migrated to the US between 1870 and 1881 to the

1861 census. This mechanically reduces the matching rate, for we cannot match all those born between

1862 and 1881 who migrate during this period. Similarly, the matching rate decreases after 1911. This is

because censuses after 1911 are protected by British privacy law. We thus match all those who migrate

after 1911 to that census. However, this implies that we cannot match all those who migrated after 1911

and were born after that year. To ensure that our results are not driven by these asymmetries at the

edges of the sample, in robustness analyses, we show that restricting the period to the years 1880-1920

does not affect our main findings.

C.2.2 Number of Matches and Observable Characteristics

One plausible concern is that instances of migrants with multiple matches in the UK census are not ran-

domly distributed. This may be due to various reasons (Bailey et al., 2020). First, educated individuals

are more likely to report their name and surname in full, with consistent spelling over time. This would

generate non-classical measurement error because the matching rate would be higher for a selected sub-

sample of the population. This issue does not seem to be relevant in this case, as the matching rate—i.e.

the share of immigrants that are eventually matched, irrespective of the number of matches—approaches

the universe of the observations. Second, the number of matches may not be orthogonal to individ-

ual characteristics. This may be the case if wealthier individuals give relatively uncommon names, as

documented by Olivetti et al. (2020). To assess the severity of this concern, we regress the number of

matches on a set of individual-level observable variables observed in the US and UK censuses. Under

classical measurement error, we would expect no statistically significant correlation between the num-

ber of matches and observable characteristics. Table C.1 reports the estimates thus obtained. We find

minimal and marginally significant correlations between the number of matches and individual-level

characteristics observed in the US census. The number of matches correlates positively with agriculture
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and low-skilled employment. However, these correlations are very small: one more match is associated

with a .01% increase in the probability of being employed in agriculture. This association is marginally

larger for low-skilled manufacturing employment (0.03%). These very low magnitudes are unlikely to

affect the results we document in this paper quantitatively. Moreover, notice that most correlations are

not statistically significant. Most importantly, we do not find any significant association between the

number of matches and the location of English immigrants. This is reassuring because our identification

assumption crucially hinges on the variation arising from settlement decisions. We believe this is solid

evidence of our linking algorithm and the novel database we assemble.

C.2.3 Plausibility Checks

Official statistics do not contain disaggregated data on emigration outflows. We thus rely on data com-

piled by Baines (2002) to attempt a validation of our series. These are not, however, based on official

reports. The author tabulates emigration figures estimating the “missing population” from enumeration

tables published by the census. This methodology yields necessarily approximate results. Moreover, and

more crucially for our analysis, Baines (2002) is only able to construct data by counties, a much coarser

level of aggregation than registration districts, and report figures on the overall number of overseas

emigrants. These include outflows toward Scotland, Ireland, as well as the US and other overseas desti-

nations. Lastly, the data only cover the last three decades of the nineteenth century. These caveats imply

that we do not expect this validation exercise to yield unambiguously conclusive results. This notwith-

standing, since the US was a major destination for British emigrants, this comparison is useful to gauge

the plausibility of our estimates. Figure C.3 reports the correlation between the two datasets. We find a

positive and statistically significant correlation between overall out-migration and US emigration, both

unconditionally (C.3a), as well as conditioning on county fixed effects (C.3b) and county fixed effects and

a time trend (C.3c). Overall, this exercise indicates that our linked dataset is consistent with the previous

historical literature.

We now describe an exercise to evaluate the plausibility of the linking algorithm. Building on Abramitzky

et al. (2021), we construct an intergenerational linked sample of English and Welsh individuals from the

population censuses in 1881, 1891, and 1901.68 The algorithm is very standard: for any given individ-

ual in census 𝑡, we look at individuals with the same name, surname, and birth year—with a one-year

tolerance—who were recorded living in the same parish at year 𝑡 + 10. If at least one record is found, we

link that individual to that record(s). Otherwise, we look for potential matches in the same district. If no

match is found, we leave that individual unmatched. The idea of the exercise is the probability to link

68We do not use the 1861 because no census was taken in 1881. This would force us to link individuals in the 1861 census to the

1881 one. However, this imbalance may bias the linking rate between 1861 and 1881. We thus prefer to focus on the censuses

for which we have the follow-up taken one decade after.
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migrants to the census after they migrate to the US should be lower than for the rest of the (non-migrant)

population.

We compare the linking rate across migrants and non-migrants in Figure C.4.69 The blue bars report

the linking rate in the intergenerational sample for migrants; the red bars, instead, refer to non-migrants.

We find that non-migrants are more than two times more likely than migrants to be linked to the follow-

up census. The matching rate of the intergenerational sample is 42% for non-migrants, but it is only 21%

for US migrants. The most conservative interpretation of this result is that it provides an upper bound

to the share of false positive matches of the international migrant sample. Suppose that all matches in

the intergenerational linked sample were true positives. Then, the share of false positive links in the

migrant sample would be 40%. In other words, even in this “worst-case” scenario, approximately 60%

of the linked migrant matches would be true positives. It should be noted, however, that this represents

a somewhat unlikely limit case for intergenerational linkage techniques display substantial type-I error

rates (Bailey et al., 2020). Overall, we view this exercise as evidence in favor of the plausibility of the

international migrant sample.

To further assess the robustness of the UK-US linkage, we perform one additional linking exercise

that excludes individuals that are matched in the intergenerational linked sample from the pool of en-

tries which we attempt to link US migrants with. In other words, we exclude individuals that we would

identify as plausibly living in the UK ten years after a given census is taken. In Figure C.5 we compare this

linked migrant sample with the baseline dataset that does not apply this trimming to the set of potential

matches. These two exercises yield extremely consistent migration flows.

C.3 Return Migration Data

Following the logic explained in section C.1, we construct a linked sample of return migrants. This identi-

fies English and Welsh immigrants in the US in decade 𝑑 and looks for possible matches in the UK census

in decade 𝑑 + 1, using a minor variation on the algorithm described previously. Since the last UK census

that we have is the 1911 one, we face a hard upper bound for the coverage of return migration, as we

can only construct return migrants linked samples spanning the period 1870–1910.

Previous research suggests that return migration rates during the Age of Mass Migration were sub-

stantial (Bandiera et al., 2013), although probably less so in the UK than in second-wave countries such

as Italy. Using our linked sample methodology, we find an approximately 30% return migration rate,

broadly consistent with previous estimates.

69To avoid differential attrition due to mortality across migrants and non-migrants, we restrict the sample to individuals that

were no older than 40 in the starting census year.
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C.4 Summary Statistics and Stylized Facts

The newly developed dataset we construct presents some key novelties compared to available data. It

is the first dataset that allows retrieving the origin of US immigrants from England and Wales at a fine

level of geographical aggregation during a period of massive international migrations (1880–1930).70

The dataset’s granular—individual—structure allows us to observe several individual characteristics of

immigrants at home and in the US. This section briefly discusses key stylized facts that our new data

allow us to document.

In Figure C.6, we explore the origin of English and Welsh emigrants to the US over time. Each figure

reports the emigration rate normalized by population in 1900, in thousand units. Two patterns emerge.

First, substantial cross-sectional heterogeneity exists in the intensity of out-migration across districts

throughout the sample period. Second, we find that the intensity of US emigration flows is initially larger

in rural districts, especially in the South West and East regions, but this shifts over time toward industrial

and urban areas. By the 1910s, the industrialized Lancashire districts featured as a prominent area

of emigration. This finding provides a sound quantitative validation of historical—largely anecdotal—

evidence (Erickson, 1972; Baines, 2002).

Additionally, we can study the selection patterns of English and Welsh emigrants along two margins.

Specifically, we can compare them to (i) the native US population in the areas where they settled and

(ii) the non-migrant population in England and Wales who lived in their origin areas. These exercises

extend seminal historical work by Baines (2002), who performed a similar exercise using incomplete

information from the population censuses. We defer a discussion of selection patterns to the main text.

Here, we only note that our dataset is well-suited to study the selection of British emigrants because it

identifies individuals before they migrate, thus conveying a complete picture of selection issues during

the period.

70Similar data-sets have been produced for Norwegian Abramitzky et al. (2014) and Swedish (Andersson et al., 2022) immigrants.

Our is the first such effort for a major European country: in 1890, the population in England and Wales stood at more than 27

million inhabitants. This compares to approximately 2 million Norwegians and 4.7 million Swedes.
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C.5 Tables

Dep. Var.: Number of Matches

(1) (2) (3)

Panel A. Occupations

Agriculture 0.003 0.004* 0.003**

(0.001) (0.001) (0.001)

Low-Skilled Manufacture 0.013** 0.011** 0.008**

(0.003) (0.003) (0.002)

High-Skilled Manufacture 0.006 0.007 0.008*

(0.003) (0.003) (0.003)

Professionals –0.001 –0.001 –0.001

(0.001) (0.001) (0.001)

Public Administration –0.004** –0.003* –0.002

(0.001) (0.001) (0.001)

Manager –0.000 –0.000 0.000

(0.000) (0.000) (0.000)

Service Worker 0.001 0.001 0.002

(0.001) (0.001) (0.001)

Panel B. Origin

Northeast –0.004

(0.006)

Midwest 0.004

(0.004)

South –0.002

(0.001)

West 0.001

(0.002)

State FE No Yes No

County FE No No Yes

Year FE No Yes Yes

Table C.1. Correlation Between Number of Matches and Observable Characteristics

Notes. This table reports the correlation between observable characteristics of British immigrants in the US census

and the number of matches in the linked sample database. In each row, the table displays the correlation between

the number of matches and an indicator equal to one if for immigrants that correspond to the row variable and

zero otherwise. The sample is restricted to the set of matches we effectively use in the analysis. Column (1) reports

unconditional correlations; column (2) includes state and census decade fixed effects; column (3) adds county fixed

effects. In Panel A, the characteristics are the occupations; in Panel B, the variables are the Census Bureau region

of residence. Standard errors, clustered at the county level, are shown in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.

◀ Back: Data ◀ Back: Appendix 3 – Migrants
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C.6 Figures
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Figure C.1. Share of British Immigrants in the US Census Matched to the UK Census

Notes. These figures report the share of English and Welsh immigrants recorded in the US census that we match

to the UK census. Panel C.1a plots the share of records that we match to the UK census and whose match quality

is such that we retain it in the linked sample, broken down by the number of matches. In the baseline sample, we

keep records with no more than two matches. Blue bars report ratios relative to the entire number of immigrants,

and red bars restrict the set of immigrants to those we can match. Panel C.1b reports the matching rate over time.

The blue area reports the total number of US immigrants, the red area reports the entire number of matches we

obtain, and the green area reports the matches that eventually enter our baseline linked sample. The black dashed

line on the right 𝑦-axis is the ratio between the green and the blue areas.
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Figure C.2. Quality of Matches in the Complete Linked Sample: Names and Surnames

Notes. The figures report the distribution of the match quality in terms of name and surname similarity for the

set of records with no more than two matches in the baseline sample. The similarity measure we use to construct

the links is the Jaro-Winkler. This string metric measures the edit distance between the name and surname of

the British immigrant recorded in the US census and their match(es) in the UK census. Panel C.2a reports the

distribution of the name similarity; Panel C.2b refers to surnames. The vertical lines mark the quality thresholds

we impose for a match to be part of the final linked sample.
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Baines Estimates Overseas Emigrants
Coefficient = 0.216 (Std. Err. = 0.097). R2 = 0.025.

(a) Unconditional Correlation
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Baines Estimates Overseas Emigrants
Coefficient = 0.560 (Std. Err. = 0.087). R2 = 0.853.

(b) County Fixed Effects
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Baines Estimates Overseas Emigrants
Coefficient = 0.558 (Std. Err. = 0.081). R2 = 0.873.

(c) County Fixed Effects and Decade Trend

Figure C.3. Comparison Between Linked Data and Estimates from Baines

Notes. These figures report the correlation between county-level out-migration measured using our linked emi-

grant sample and data from (Appendix 1 Baines, 2002). The dataset listed by the author is at the county level at

a decade time frequency between 1870 and 1900 and reports the overall number of overseas emigrants. Thus, it

conflates emigration to Scotland, Ireland, European, and trans-oceanic out-flows. In panel C.3a we correlate the

two series; in panels C.3b, we control for county fixed effects; in panel C.3c, we include a decade time trend. Ob-

servations are weighted by county-level population in 1880. Each graph reports in note the regression coefficient,

along with its standard error, and the coefficient of determination of each regression.
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Figure C.4. Falsification Exercise of the Intergenerational Linked Sample

Notes. This figure reports the matching rate in the intergenerational linked sample. The blue bars report the

matching rate among individuals that are identified as US migrants in the UK census. The red bars refer to individ-

uals that are not identified as US migrants in the UK census. We exclude the 1861 census because there is no 1871

census in the UK and the intergenerational sample is unbalanced over the years 1861–1881. The intergenerational

linked sample includes individuals with one single match obtained at the parish or at the district level. We exclude

individuals over forty years old because differential mortality across the life cycle may impact the linking rate of

the intergenerational sample.
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(a) District-Level Migration Flows
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Notes. Coefficient = 0.866 (Clust. Std. Err. = 0.007). R2 = 0.872.

(b) District-County Migration Flows

Figure C.5. Comparison Between Linked Samples: Full and Restricted

Notes. This figure compares the migration flows of the baseline UK-US linked sample, on the 𝑦-axis, with those

obtained by restricting the pool of potential matches to those entries in the UK census that are not matched to

any individual in the following census decade, on the 𝑥-axis. Panel C.5a reports the district-level US emigration;

the unit of observation is a district, observed at a decade frequency between 1870 and 1900. The figure includes

district and decade fixed effects. The reported standard error is clustered at the district level. Panel C.5b reports

the district-county-level US migration flows; the unit of observation is a district-county pair, observed at a decade

frequency between 1870 and 1900. The figure includes district, county, and decade fixed effects. The reported

standard error is clustered at the district-by-county level.
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(a) 1871-1880 (b) 1881-1890 (c) 1891-1900

(d) 1901-1910 (e) 1911-1920 (f) 1921-1930

Figure C.6. Distribution of the Emigration Rate Across Districts, 1871–1930

Notes. These figures report the distribution of US emigrants across districts in England and Wales over the period

1871–1939 by decade. Data are from the matched emigrants’ sample. The number of emigrants in each decade is

normalized by population in 1900 and is expressed in ‰ units. Districts are displayed at their 1900 borders. Out-

migration is also cross-walked to consistent historical borders. Lighter to darker blues indicate higher emigration

rates.
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D Additional Results

This section presents in some detail several additional results that are mentioned in passing in the main

text.

D.1 Trade-Induced Technology Transfer

Our favored explanation of the return innovation result is that migrants facilitate the flow of knowledge

between the areas where they settle and those they originate from. We argue that those flows are fos-

tered by the diffusion of information and by market integration. This section presents one more piece of

evidence in this direction. We focus on international trade as a measure of bilateral market integration.

Previous research documents that trade fosters innovation, either because of increased import compe-

tition (Bloom et al., 2016; Autor et al., 2020), export opportunities (Bustos, 2011; Atkin et al., 2017; Aghion

et al., 2018), access to intermediate inputs (Juhász and Steinwender, 2018), and increased market size

(Coelli et al., 2022).71 In our analysis, we interpret trade as a means of facilitating technology transfer

between the UK and the US, following Aleksynska and Peri (2014) and Ottaviano et al. (2018).

We consider a major shock to trade flows between the US and the UK: the 1930 Smoot-Hawley Act.

The Act was a major trade policy reform enacted in response to the Great Depression (Eichengreen, 1986;

Crucini, 1994). Importantly for our setting, the Act did not establish a uniform tariff rate. Instead, as we

report in Table A.3, tariffs vastly differed across industries before and after the shock. We leverage this

variation, interacted with the before-Act knowledge exposure in a difference-in-differences setting.72

The key idea that underlies this approach is that if migration linkages generate return innovation flows

through international trade, then an increase in trade costs is expected to reduce patenting in the UK

in the sectors that (i) districts were more exposed to, through migrations, and (ii) were targeted by the

tariff increase.

We thus estimate the following double differences model separately for protected and non-protected

industries:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ ×

[
1 (𝑡 = 1931 + ℎ) × Knowledge Exposure𝑖𝑘

]
+ 𝜀𝑖𝑘,𝑡 (D.1)

Where 𝑖, 𝑘, and 𝑡 respectively denote a district, technology class, and year, and Knowledge Exposure𝑖𝑘 is

the average sector-level knowledge exposure in the decade before the Act (1920–1930). In the baseline

analysis, an industry is protected if its tariff rate increases by more than 50 p.p. between 1925–1930 and

71Shu and Steinwender (2019) provide a critical assessment of the literature studying the effect of international trade on innova-

tion.
72We first map sectors defined in the Act to technology classes. We then assign one class to the treatment group if its average ad

valorem import duty changes by more than fifty percentage points between 1925–1930 and 1931–1936. Yearly tariff rates have

been digitized from the Statistical Abstract of the United States.
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1931–1935. Then, we estimate the triple-differences specification that compares treated and non-treated

industries:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑖×𝑡 + 𝛼𝑘×𝑡+

+
𝑏∑︁

ℎ=−𝑎
𝛽ℎ ×

[
Tariff𝑘 × 1 (𝑡 = 1931 + ℎ) × Knowledge Exposure𝑖𝑘

]
+ 𝜀𝑖𝑘,𝑡

(D.2)

where Tariff𝑘 is an indicator returning value one for protected industries and zero otherwise.

In columns (1–2) of Table D.3 we report the results of model (D.1). Column (1) presents the esti-

mated coefficient for non-protected industries, while column (2) focuses on protected ones. We find no

effect for the former and a negative effect for the latter. This is confirmed when looking at the associated

flexible specification, reported in Figure D.1. This also provides evidence supporting the parallel trends

assumption for the two groups of technology classes. In columns (3–5), we report the estimates of the

triple differences model (D.2). We consider three possible threshold values of the increase in the tariff

rate after the Act to define a protected sector (10%, 30%, and 50%). All yield quantitatively similar esti-

mates. Note, however, that the estimated ATE reassuringly increases in absolute magnitudes for larger

tariff increases.

The analysis suggests that trade—which we interpret as a proxy for market integration—is a relevant

channel through which migration ties generate knowledge flows and technology transfer. However, it is

worth noting that the magnitude of the estimated treatment effects of the tariff reform on UK innovation

is modest, despite the large increase in tariff duties. We thus interpret trade as one additional, although

plausibly not the pivotal, factor driving return innovation.

D.2 Selection of British Migrants

The historical scholarship argues that the English and Welsh mass migration to the US starkly differed

from that of other countries (Berthoff, 1953; Baines, 2002). Unlike other European countries, such as

Germany, Sweden, or Italy, UK emigration to the US in the second half of the nineteenth century was

not a low-skilled rural phenomenon. Especially after the 1880s, people started to leave urban, industrial

areas. Importantly, emigrants did not represent the bottom of the human capital distribution, as was

the case in Italy (Spitzer and Zimran, 2018) or Norway (Abramitzky et al., 2014). This is crucial for our

analysis, as it is unlikely that illiterate farmers would facilitate the flow of novel knowledge back to their

origin areas. Even if this was the case, it would be equally unlikely that those rural areas would have the

ability to reproduce US patents. While these considerations are helpful for our analysis, they largely rely

on anecdotal evidence or analyses of incomplete census sources. In this section, we present evidence on

the selection of English emigrants to the US and their integration into the US. To construct these statistics,

we leverage the novel linked sample that allows us to observe individual-level characteristics before
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emigrants left—in the UK census—and after they settled—in the US census.

Table D.4 compares UK emigrants with the non-migrant population. Column (1) refers to non-migrants,

and columns (2) and (5) refer to emigrants and return migrants, respectively. In columns (3) and (6), we

compute the difference between non-migrants and emigrants and non-migrants and return migrants,

respectively. Migrants are less likely to work in agriculture and as professionals. They are, however,

more likely to be employed in industrial sectors, such as textiles and metallurgy. This overall confirms

the historical analysis of Baines (2002). Emigrants mainly originated from the North West, including

Lancashire, and South West, chiefly, Devon and Cornwall. Similar patterns emerge when looking at

return migrants, who are even less likely to be employed as agricultural workers. Return rates in high-

emigration areas of the South West appear low compared to the rest of the country, while they are very

high in the London area.

In Table D.5, we compare English and Welsh immigrants to the rest of the US population. Column

(1) refers to natives, and columns (2) and (5) refer to emigrants and return migrants, respectively. In

columns (3) and (6), we compute the difference between natives and emigrants and natives and return

migrants, respectively. UK immigrants differ substantially from the rest of the US population: they are

less likely to work in agriculture and as civil servants. By comparison, they are more likely to be em-

ployed in metallurgy, textiles, and trade. This aligns well with evidence by Erickson (1972), who argues

that English immigrants in the US tended to specialize in industries where they had a comparative ad-

vantage. Similar patterns emerge for return migrants. Regarding their geographical distribution, UK

immigrants settled most commonly in the New England and Mid-Atlantic regions.

D.3 Long-Run Effect of Return Innovation

We now investigate the persistence of the effect of exposure to foreign knowledge through migration ties

on the direction of patenting activity. While this exercise cannot be tasked with any claim of causality, it

nonetheless suggests the possible far-reaching effects of out-migration on innovation.

We estimate the following regression:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑡 +
∑︁
𝜏∈T

𝛽𝜏
[
Knowledge Exposure𝑖𝑘 × 1 (𝑡 = 𝜏 | 𝑡 = 𝜏 + 1)

]
+ 𝜀𝑖𝑘,𝑡 (D.3)

where 𝑖, 𝑘, and 𝑡 denote a district, technology class, and year, respectively. In this setting, we have 𝑡 ∈

[1940, 2015]. The term Knowledge Exposure𝑖𝑘 refers to knowledge exposure in the years 1900–1930,

i.e., before the sample period. To reduce noise in the estimated 𝛽𝜏 coefficients, we conflate years in T

in biennial windows. The estimated set of 𝛽𝜏 expresses the conditional correlation between historical

exposure to knowledge exposure and innovation activity in the two-year window indexed by 𝜏.

In Figure D.3, we report the set of estimated 𝛽𝜏 over time. The correlation between historical knowl-

Appendix D – Page 47



edge exposure and patenting activity remained positive and significant until the early 1980s, although

it—reassuringly— decreased over time. We interpret this as evidence that exposure to foreign knowl-

edge through migration ties has a potentially long-lasting effect on the composition of innovation activity

over time. In Table D.9 we re-estimate model (D.3), sector-by-sector, by decade. Compared to (D.3), we can

thus only include district and decade fixed effects. Columns report the estimated 𝛽𝜏 by decade. The esti-

mated correlation between historical exposure and patenting decreases over time in almost all sectors

and only a few display significant coefficients after the 1980s.

D.4 Further Additional Results

D.4.1 Out-Migration and the Volume of Innovation

The main analysis concentrates on the effect of knowledge exposure on the direction of innovation.

Knowledge exposure leverages variation in specialization across US counties and bilateral flows between

UK districts and US counties. In this section, we briefly comment on the effect of out-migration on the

volume of innovation.

We estimate variations on the following model:

Patents𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽 × US Emigrants𝑖,𝑡 + 𝜀𝑖,𝑡 (D.4)

where US Emigrants𝑖,𝑡 is the total number of emigrants from district 𝑖 in decade 𝑡. As in the main text, we

instrument total out-migration flows with the shift-share instruments constructed using railway-based

and leave-out immigration shocks. Compared to the model estimated in the main text, endogeneity con-

cerns in (D.4) are severe. However, if the instruments are valid, then the estimated 𝛽 coefficients mea-

sured the causal effect of out-migration on patenting. A perhaps more crucial concern in regression

(D.4) is that we do not have information on emigration to countries other than the US. Suppose emigra-

tion rates to, say, Australia or Canada (the second and third most common destinations) were correlated

with US out-migration. In that case, we may fail to single out the effect of out-migration.

With these caveats in mind, in Table D.6, we report the estimates of regression (D.4). In panel A,

columns (1–3), we report the correlation between measured out-migration and patenting, while columns

(4–6) and (7–9) display the reduced form association with, respectively, the railway-based and the leave-

out instruments. In panel B we report the 2SLS estimates. We find that the contemporaneous effect

of out-migration on innovation is negative. This is reasonable given that out-migration entails a loss

of human capital, which, in the light of the selection analysis, was probably relatively skilled and is

consistent with the “brain drain” literature. Once we lag emigration by one decade, however, we find

a positive effect. This sign reversal is robust across the two instruments in the reduced form and the

two-stage least-square estimates. It is tempting to interpret it as evidence of “brain gain”, that is, that
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return innovation increases the volume of innovation (Docquier and Rapoport, 2012). While the results

are consistent with this interpretation, they are not conclusive because of the caveats that underlie this

exercise.

D.4.2 Assortative Matching

In this section, we lay down a simple framework to test whether British immigrants sort into US counties

depending on the innovation similarity between the settlement location and their origin district. Let

P 𝑗,𝑡 = {𝑝1 𝑗,𝑡 , . . . , 𝑝𝑁 𝑗,𝑡} denote the patent portfolio of county 𝑗 in decade 𝑡, whose generic entry 𝑝𝑘 𝑗𝑡 returns

the number of patents in technology class 𝑘. Analogously, let P𝑖,𝑡 be the portfolio of district 𝑖. We define

a metric of innovation similarity as follows:

Innovation Similarity𝑖 𝑗,𝑡 ≡
P⊺
𝑖,𝑡
P 𝑗,𝑡

∥P𝑖,𝑡 ∥ · ∥P 𝑗,𝑡 ∥
=

∑
𝑘 𝑝𝑘𝑖,𝑡𝑝𝑘 𝑗,𝑡√︃∑

𝑘 𝑝
2
𝑘𝑖,𝑡

√︃∑
𝑘 𝑝

2
𝑘 𝑗,𝑡

≤ 1 (D.5)

which is a simple cosine similarity. The similarity measure returns value one if the patent portfolios

of district 𝑖 and county 𝑗 are equal, meaning their composition across classes is the same. The index is

normalized between zero and one.

We then estimate variations on the following simple linear probability model:

Emigrants𝑖→ 𝑗,𝑡 = 𝛼𝑖× 𝑗 + 𝛼𝑡 + 𝛽 × Innovation Similarity𝑖 𝑗,𝑡 + 𝑋
⊺
𝑖 𝑗,𝑡

Γ + 𝜀𝑖 𝑗,𝑡 (D.6)

where the dependent variable is the flow of emigrants from district 𝑖𝑡 to county 𝑗 in decade 𝑑, and 𝛼𝑖× 𝑗

denotes county-by-district fixed effects. The coefficient 𝛽 thus yields the correlation between the similar-

ity of innovation activity and migration flows. The dependent variable is measured in logs, and standard

errors are two-way clustered by district and county. Under sorting, one would expect 𝛽 > 0.

We test this prediction in Table D.2. We find no correlation between the similarity of innovation port-

folios across county districts and the migration flow between them. This holds irrespective of whether

we take the contemporaneous similarity (columns 1–2) or if we lag by one (columns 3–4) or two (columns

5–6) decades. Notably, the standardized beta coefficient of the innovation similarity term is always mini-

mal in magnitude. This suggests that assortative matching based on innovation similarity between origin

and destination places is probably not a significant threat to a causal interpretation of our estimates. This

notwithstanding, since the similarity of innovation portfolios is measured with error, we do not claim

that we can exclude it tout court.
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D.5 Tables

Baseline Excluding States in...

(1) (2) (3) (4) (5)

Northeast Midwest South West

𝐼Rail
𝑡−1 × Immigrant Flow𝑡−1 0.372∗∗∗ 0.399∗∗∗ 0.198∗∗ 0.461∗∗ 0.252∗∗

(0.102) (0.111) (0.097) (0.198) (0.101)

𝐼Rail
𝑡−1 0.845 4.014 -4.288 -17.024∗∗∗ 3.374

(2.765) (2.775) (2.798) (5.918) (2.775)

County FE Yes Yes Yes Yes Yes

Decade FE Yes Yes Yes Yes Yes

N. of Counties 2759 2543 1742 1513 2479

N. of Observations 17308 15803 10919 9222 15980

R2 0.905 0.903 0.921 0.880 0.915

Mean Dep. Var. 79.842 74.284 55.019 132.174 72.101

Table D.1. Zero-Stage Regressions Between Immigrant Shares and Railway Access

Notes. This table reports the results of the zero-stage regressions that we estimate to construct the railway-based

county-level immigration shocks. This table largely replicates Sequeira et al. (2020). The unit of observation is a

county observed at a decade frequency between 1870 and 1930. The dependent variable is the share of the foreign-

born population. The main dependent variable is an interaction between the one-decade-lagged national inflow of

immigrants and an indicator variable that returns value one if the county was connected to the national railway

network in the previous decade and zero otherwise. The regressions also control for the railway indicator, the

lagged share of foreign-borns, an interaction between lagged national industrial production and the railway indi-

cator, an interaction between lagged GDP and the railway indicator, population density, the share of the population

living in urban centers, and an interaction between the share of the urban population and the national inflow of

immigrants. The parameter restriction imposed by the instrument’s logic requires that the railway indicator’s co-

efficient be non-positive. In column (1), the sample is the universe of counties; in columns (2), (3), (4), and (5),

we drop states in, respectively, the North-East, Midwest, South, and West Census Bureau regions. Each regression

includes county and decade fixed effects. Standard errors, clustered at the county level, are displayed in brackets.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Contemporaneous 10 Years Lag 20 Years Lag

(1) (2) (3) (4) (5) (6)

Innovation Similarity 0.083 201.876

(2.847) (155.968)

Innovation Similarity𝑡−1 0.419 333.940

(2.800) (205.476)

Innovation Similarity𝑡−2 1.370 -172.428

(2.485) (218.951)

District-County FE Yes Yes Yes Yes Yes Yes

Decade FE Yes Yes Yes Yes Yes Yes

N. of District-Counties 1743283 32176 1665941 31383 1505060 29948

N. of Observations 9029476 88636 7266084 86789 5476833 83220

Sample All Non-Zero All Non-Zero All Non-Zero

R2 0.473 0.675 0.553 0.675 0.662 0.676

Mean Dep. Var. 0.022 1.617 0.027 1.635 0.034 1.670

Std. Beta Coef. 0.000 0.010 0.000 0.018 0.001 -0.010

Table D.2. British Immigrants Assortative Matching Across US Counties

Notes. This table reports the association between the similarity of innovation activity and migration flows between

US counties-UK districts pairs. The unit of observation is a county-district pair, observed at a decade frequency

between 1870 and 1920. The dependent variable is the number of emigrants that leave the given district and settle

in the given county. The independent variable is the similarity of the innovation portfolios between the county and

the district. The innovation similarity is computed as the cosine distance of the respective patent portfolios over

the decade. Columns (1), (3), and (5) report results for the universe of county-district pairs; columns (2), (4), and

(6) restrict to pairs with non-zero migration flows. Columns (1) and (2) estimate the contemporaneous correlation;

in columns (3) and (4), innovation similarity appears with a one-decade lag; in columns (5) and (6), it is included

with a two-decade lag. Regressions include district-by-county and decade fixed effects. Standard errors, clustered

at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Double Differences Triple Differences

(1) (2) (3) (4) (5)

Not Protected Protected +10% +30% +50%

Knowledge Exposure × Post -0.040 -0.463∗∗

(0.063) (0.219)

Knowledge Exposure × Post × Protected (+10%) -0.469∗∗∗

(0.078)

Knowledge Exposure × Post × Protected (+30%) -0.478∗

(0.269)

Knowledge Exposure × Post × Protected (+50%) -0.685∗∗∗

(0.206)

Year FE Yes Yes – – –

District-Year FE No No Yes Yes Yes

District-Class FE Yes Yes Yes Yes Yes

Class-Year FE No No Yes Yes Yes

N. of District-Class 632 632 632 632 632

N. of Observations 63200 37920 101120 101120 101120

R2 0.653 0.563 0.713 0.713 0.713

Mean Dep. Var. 2.125 1.260 1.801 1.801 1.801

Std. Beta Coef. 0.000 0.000 0.000 0.000 0.000

Table D.3. Double and Triple Differences Effect of The Smoot-Hawley Act on Innovation

Notes. This table reports the estimated effect of an increase in the US tariff rate on innovation in Britain. The unit

of observation is a district-technology class pair observed at a yearly frequency between 1920 and 1939. The de-

pendent variable is the number of patents by district technology class. In columns (1–2), the independent variable

is the interaction between knowledge exposure over 1910–1920 and a post-reform (1930) indicator variable. The

regression in column (1) is estimated over technology classes not targeted by the Act; in column (2), we focus on

classes that the Act targets. We define a class as “targeted” if its average tariff rate increases by more than 50%

after the Smoot-Hawley Act. In columns (3), (4), and (5), the treatment interacts the previous one with an indicator

that returns value one for technology classes whose tariff rates increases by more than, respectively, 10%, 30%,

and 50% after 1930. Regressions (1–2) are thus double-difference designs; regressions (3–5) are triple-difference

designs. Consequently, in columns (1–2), we include district-by-class and year fixed effects, while in columns (3–5),

we add district-by-year and technology-by-year fixed effects. Standard errors, clustered at the district level, are

reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Non Migrants Emigrants Return Migrants

(1) (2) (3) (4) (5) (6) (7)

Mean Mean Difference Std. Err. Mean Difference Std. Err.

Panel A. Employment (Dependent variable = 1 if individual employed in:)

Agriculture 0.281 0.271 -0.009*** (0.001) 0.252 -0.028*** (0.002)

Chemicals 0.008 0.008 -0.001** (0.000) 0.009 0.001** (0.000)

Construction 0.141 0.142 0.001 (0.001) 0.145 0.004*** (0.002)

Engineering 0.138 0.138 -0.000 (0.001) 0.148 0.010*** (0.002)

Liberal Profession 0.035 0.032 -0.002*** (0.000) 0.036 0.002* (0.001)

Metallurgy 0.029 0.034 0.005*** (0.001) 0.032 0.003*** (0.001)

Other Manufacturing 0.074 0.074 -0.000 (0.001) 0.074 -0.001 (0.001)

Public Administration 0.030 0.028 -0.001*** (0.000) 0.032 0.002*** (0.001)

Textiles 0.090 0.099 0.009*** (0.001) 0.082 -0.008*** (0.001)

Trade 0.072 0.079 0.007*** (0.001) 0.078 0.007*** (0.001)

Transport 0.097 0.090 -0.007*** (0.001) 0.103 0.006*** (0.001)

Utilities 0.007 0.006 -0.000 (0.000) 0.009 0.002*** (0.000)

Panel B. Region of Residence (Dependent variable = 1 if individual lives in:)

East 0.102 0.086 -0.016*** (0.001) 0.089 -0.014*** (0.001)

East Midlands 0.065 0.057 -0.007*** (0.000) 0.058 -0.006*** (0.001)

London 0.132 0.129 -0.003*** (0.001) 0.139 0.006*** (0.001)

North East 0.067 0.070 0.003*** (0.000) 0.070 0.003*** (0.001)

North West 0.179 0.194 0.015*** (0.001) 0.199 0.020*** (0.001)

South East 0.120 0.110 -0.009*** (0.001) 0.117 -0.003*** (0.001)

South West 0.063 0.085 0.022*** (0.001) 0.065 0.002*** (0.001)

Wales 0.070 0.064 -0.006*** (0.000) 0.069 -0.001 (0.001)

West Midlands 0.114 0.110 -0.004*** (0.001) 0.108 -0.006*** (0.001)

Yorkshire 0.088 0.094 0.006*** (0.001) 0.087 -0.001* (0.001)

Table D.4. Selection of US Emigrants Compared to the Rest of the British Population

Notes. This table compares observable individual characteristics of US emigrants with the rest of the British pop-

ulation. In each row, we define a dummy variable equal to one for individuals in the given employed in the given

sector (Panel A) or residing in the given division (Panel B) and compute the average for non-migrants (column 1),

emigrants (column 2), and return migrants (column 5). Columns (3) and (6) report the difference between columns

(1) and, respectively, columns (2) and (5). Robust standard errors are reported in columns (4) and (7).

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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US Population Immigrants Return Migrants

(1) (2) (3) (4) (5) (6) (7)

Mean Mean Difference Std. Err. Mean Difference Std. Err.

Panel A. Employment (Dependent variable = 1 if individual employed in:)

Agriculture 0.215 0.121 -0.094*** (0.001) 0.129 -0.086*** (0.001)

Chemicals 0.006 0.010 0.004*** (0.000) 0.006 -0.001*** (0.000)

Construction 0.044 0.096 0.052*** (0.001) 0.087 0.042*** (0.001)

Engineering 0.434 0.199 -0.235*** (0.001) 0.262 -0.172*** (0.002)

Liberal Profession 0.042 0.078 0.036*** (0.001) 0.063 0.021*** (0.001)

Other Manufacturing 0.076 0.159 0.083*** (0.001) 0.148 0.072*** (0.001)

Public Administration 0.014 0.009 -0.005*** (0.000) 0.008 -0.006*** (0.000)

Textiles 0.015 0.076 0.061*** (0.001) 0.080 0.066*** (0.001)

Trade 0.069 0.104 0.035*** (0.001) 0.092 0.023*** (0.001)

Transport 0.056 0.087 0.031*** (0.001) 0.085 0.029*** (0.001)

Utilities 0.028 0.059 0.031*** (0.001) 0.041 0.013*** (0.001)

Panel B. Region of Residence (Dependent variable = 1 if individual lives in:)

East North Central 0.205 0.210 0.005*** (0.001) 0.192 -0.014*** (0.001)

East South Central 0.087 0.008 -0.079*** (0.000) 0.008 -0.078*** (0.000)

Mid Atlantic 0.208 0.350 0.143*** (0.001) 0.365 0.157*** (0.002)

Mountain 0.030 0.058 0.028*** (0.000) 0.062 0.032*** (0.001)

New England 0.068 0.165 0.097*** (0.001) 0.187 0.120*** (0.001)

Pacific 0.054 0.101 0.047*** (0.001) 0.072 0.018*** (0.001)

South Atlantic 0.130 0.026 -0.104*** (0.000) 0.023 -0.107*** (0.000)

West North Central 0.123 0.067 -0.055*** (0.001) 0.077 -0.045*** (0.001)

West South Central 0.095 0.014 -0.081*** (0.000) 0.013 -0.082*** (0.000)

Table D.5. Selection of British Immigrants Compared to the Rest of the US Population

Notes. This table compares observable individual characteristics of British immigrants with the rest of the US

population. In each row, we define a dummy variable equal to one for individuals in the given employed in the

given sector (Panel A) or residing in the given division (Panel B) and compute the average for non-migrants (column

1), immigrants (column 2), and return migrants (column 5). Columns (3) and (6) report the difference between

columns (1) and, respectively, columns (2) and (5). Robust standard errors are reported in columns (4) and (7).

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Dependent Variable: Number of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. OLS Estimates

Measured US Emigration Railway Instrument Leave-Out Instrument

US Emigrants𝑡 -1.453∗∗∗

(0.303)

US Emigrants𝑡−1 0.951∗∗∗

(0.258)

US Emigrants𝑡−2 -0.702

(0.646)

Railway-Predicted Emigrants𝑡 -0.141∗∗∗

(0.038)

Railway-Predicted Emigrants𝑡−1 0.283∗∗∗

(0.074)

Railway-Predicted Emigrants𝑡−2 0.212∗∗

(0.107)

Leaveout-Predicted Emigrants𝑡 -0.307∗∗∗

(0.093)

Leaveout-Predicted Emigrants𝑡−1 0.473∗∗∗

(0.126)

Leaveout-Predicted Emigrants𝑡−2 0.162

(0.134)

Std. Beta Coef. -0.228 0.125 -0.086 -0.185 0.284 0.196 -0.095 0.106 0.034

Panel B. Two-Stage Least-Square Estimates

Railway Instrument Leave-Out Instrument Overidentified 2SLS

US Emigrants𝑡 -1.479∗∗∗ -2.351∗∗∗ -1.433∗∗∗

(0.372) (0.396) (0.389)

US Emigrants𝑡−1 1.670∗∗∗ 1.424∗∗∗ 1.662∗∗∗

(0.458) (0.366) (0.455)

US Emigrants𝑡−2 -28.128 59.484 -18.895

(30.883) (377.778) (15.412)

Std. Beta Coef. -0.232 0.219 -3.441 -0.368 0.187 7.276 -0.224 0.218 -2.311

K-P F-stat 71.165 215.018 0.805 10.054 70.998 0.026 43.918 106.788 0.933

Sargan-Hansen J 3.473 2.735 0.397

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N. of District 620 620 618 618 618 618 618 618 618

N. of Observations 2474 1858 1236 2472 1854 1236 2472 1854 1236

Mean Dep. Var. 179.519 221.154 288.871 179.672 221.617 288.871 179.672 221.617 288.871

Table D.6. Association Between Out-Migration and the Volume of Innovation

Notes. This table reports the association between US out-migration and the number of patents. The unit of ob-

servation is a district, at a decade frequency between 1880 and 1939. The dependent variable is the number of

patents. In Panel A, we report the association with measures out-migration (columns 1–3), the reduced-form rail-

way instrument (columns 4–6), and the reduced-form leave-out instrument (columns 7–9). In Panel B, we report

the two-stage least-square estimates of the railway (columns 1–3), leave-out (columns 4–6), and combined (columns

7–9) instruments. All regressions include district and decade fixed effects; standard errors are clustered at the dis-

trict level and are displayed in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Double Differences Triple Differences

(1) (2) (3) (4) (5) (6)

Level Level Level Level Share Share

Excess Deaths × Post 3.120∗∗∗

(0.751)

1(Q. of Excess Deaths > 75) × Post 1.474∗∗∗

(0.504)

Excess Deaths × Post × Pharma 2.641∗∗∗ 0.063∗∗

(0.678) (0.032)

1(Q. of Excess Deaths > 75) × Post × Pharma 1.311∗∗∗ 0.042∗∗∗

(0.451) (0.016)

County FE Yes Yes – – – –

Year FE Yes Yes – – – –

County-Year FE – – Yes Yes Yes Yes

County-Class FE – – Yes Yes Yes Yes

Class-Year FE – – Yes Yes Yes Yes

N. of County-Class 1272 1272 21624 21624 21624 21624

N. of Observations 50880 50880 864960 864960 864960 864960

Classes in Sample Pharma Pharma All All All All

R2 0.405 0.405 0.683 0.683 0.114 0.114

Mean Dep. Var. 0.991 0.991 0.534 0.534 0.077 0.077

Std. Beta Coef. 0.296 0.083 0.191 0.041 0.032 0.009

Table D.7. Estimated Effect of the Influenza Pandemic on US Innovation

Notes. This table reports the effect of exposure to the Great Influenza Pandemic (1918–1919) on innovation in

the US. The units of observation are counties (columns 1–2) and county-class pairs (columns 3–6). Units are ob-

served at a yearly frequency between 1900 and 1939. In columns (1–4), the dependent variable is the number of

patents granted; in columns (5–6), the dependent variable is the number of pharmaceutical patents divided by the

total number of patents granted. In column (1), a post-influenza indicator is interacted with a measure of excess

mortality, namely, the ratio between the average number of deaths during the pandemic (1918–1919) and the three

previous years. In column (2), the treatment interacts the post-influenza indicator with a dummy variable equal to

one for counties in the top quartile of the excess deaths distribution. In columns (3) and (5), the treatment interacts

the excess deaths measure with a post-influenza dummy and an indicator variable for pharmaceutical patents; in

columns (4) and (6), the excess deaths variable is coded as binary, and returns value one for counties in the top

quartile of the excess mortality distribution. In columns (1–2), regressions include county and year fixed effects; in

columns (3–6), regressions include county-by-year, county-by-technology class, and technology class-by-year fixed

effects. Standard errors, clustered at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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1940s 1950s 1960s 1970s 1980s 1990s 2000s

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: Number of Patents in:

Agriculture 3.183*** 2.654*** 1.914*** 1.909** 1.750** 0.647 0.516

(0.751) (0.617) (0.602) (0.790) (0.823) (0.609) (0.641)

Building 6.065*** 4.748*** 5.312*** 3.918*** 4.540*** 3.265*** 1.804*

(1.181) (1.085) (1.093) (0.942) (1.031) (1.010) (1.045)

Chemistry 23.553*** 15.352*** 23.228*** 29.817*** 11.953** 5.042 2.337

(7.640) (5.371) (6.691) (12.031) (5.354) (6.310) (6.625)

Electricity 32.018*** 31.842** 22.787*** 16.405** 8.087 2.124 2.665

(8.010) (13.812) (7.136) (8.273) (6.442) (7.260) (7.732)

Engineering 9.870*** 7.969*** 9.549*** 8.374*** 4.229*** 1.167 0.702

(1.705) (1.563) (1.754) (2.008) (1.406) (1.666) (1.720)

Engines, Pumps 6.551*** 7.387*** 5.926*** 8.172* 4.480* 0.200 0.784

(2.090) (2.559) (1.960) (4.461) (2.299) (2.228) (2.263)

Food 10.948*** 9.570*** 8.089*** 10.390*** 4.173** 0.495 -0.291

(1.995) (2.262) (2.486) (3.452) (1.830) (2.340) (2.344)

Health, Amusement 4.430*** 4.959*** 3.988*** 7.074*** 6.700*** 4.318*** 5.210***

(1.307) (1.405) (1.419) (2.111) (1.536) (1.526) (1.708)

Instruments 14.172*** 14.338*** 15.127*** 14.236*** 10.658*** 4.819 4.079

(2.937) (3.244) (3.480) (4.101) (2.905) (3.072) (3.599)

Lightning, Heating 11.553*** 8.118*** 8.113*** 5.359*** 3.534*** 1.581 0.513

(2.154) (1.447) (1.774) (1.397) (1.270) (1.528) (1.476)

Metallurgy 18.803*** 9.443*** 13.905*** 10.698*** 6.346** 1.834 0.849

(3.888) (2.573) (3.541) (3.493) (2.722) (3.110) (3.236)

Personal Articles, Furniture 6.810*** 6.784*** 5.250*** 2.813*** 1.599** 1.367* 1.674**

(1.014) (1.175) (0.811) (0.755) (0.803) (0.811) (0.821)

Printing 6.914*** 7.830*** 8.202*** 6.030*** 3.245*** 1.984* 1.455

(1.226) (1.341) (1.573) (1.205) (1.045) (1.190) (1.313)

Separating, Mixing 7.892*** 7.493*** 7.633*** 8.032*** 5.290*** 1.602 1.166

(1.707) (1.508) (1.681) (1.922) (1.458) (1.557) (1.696)

Shaping 9.833*** 7.901*** 8.591*** 7.795*** 3.555*** 1.156 0.426

(1.584) (1.377) (1.520) (1.629) (1.214) (1.421) (1.491)

Ships, Aeronautics 8.433*** 8.800*** 9.757*** 6.624*** 3.441*** 1.319 0.905

(1.032) (1.156) (1.379) (1.193) (0.946) (1.081) (1.161)

Textiles 14.865*** 12.841*** 11.039*** 10.100*** 3.649*** 0.752 0.475

(2.044) (1.653) (1.760) (2.000) (1.263) (1.464) (1.496)

Transporting 5.102*** 4.368*** 3.974*** 2.988** 1.704* 0.471 0.147

(1.157) (1.194) (1.231) (1.391) (0.934) (1.123) (1.167)

Number of Districts 632 632 632 632 632 632 632

Table D.9. Long-Run Sector Correlation Between Knowledge Exposure and Innovation

Notes. This table reports the correlation between knowledge exposure in the years 1900–1930 and subsequent

patenting activity by sector. For each class displayed in the rows, we estimate a model that interacts knowledge

exposure with decade dummies, and we report the coefficients for each decade in the respective column. The 2010s

decade serves as the baseline category. All regressions include district and decade fixed effects. Robust standard

errors are displayed in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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By Age By Occupation

(1) (2) (3) (4) (5) (6) (7) (8)

Emigrant × Post 0.105∗ 0.348∗∗∗ 0.595∗∗∗ 0.172∗ -0.040 -0.209 -0.030 0.069

(0.057) (0.134) (0.222) (0.103) (0.110) (0.202) (0.212) (0.051)

Age ∈ [18, 30) × Emigrant × Post 0.195∗∗

(0.092)

Age ∈ [30, 40) × Emigrant × Post 0.006

(0.068)

Age ∈ [50, 60) × Emigrant × Post -0.033

(0.083)

Age ≥ 60 × Emigrant × Post 0.040

(0.182)

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Sample Full Engineering Metallurgy Construction Textiles Trade Pub. Adm. Agriculture

N. of Individuals 469250 62716 12875 65013 31144 40576 15420 102463

N. of Observations 13608250 1818764 373375 1885377 903176 1176704 447180 2971427

R2 0.135 0.120 0.097 0.148 0.080 0.097 0.295 0.103

Mean Dep. Var. 0.616 0.871 0.672 0.564 0.548 0.988 0.745 0.253

Std. Beta Coef. 0.002 0.004 0.010 0.003 -0.001 -0.003 -0.000 0.002

Table D.10. Heterogeneity Analysis of the Effect of Neighborhood Out-Migration on Inno-
vation

Notes. This table reports some heterogeneity analysis on the individual-level effect of neighborhood migration on

patenting activity. The units of observation are individuals who are observed yearly between 1900 and 1920. The

baseline treatment is an indicator that, for a given individual, returns value one after at least one person that was

living in the same neighborhood as the individual migrates to the United States. In column (1), we interact this

treatment with age category dummies and normalize the dummy for the age range 40–50 as the baseline category.

In columns (2–8), we estimate the baseline double differences model by recorded occupations. Hence, in column

(2), we estimate the model only for individuals employed in engineering occupations. All models include individ-

ual and year fixed effects. Standard errors are clustered at the district level and are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Baseline Excluding States in ... Innovation Shock Treshold

(1) (2) (3) (4) (5) (6) (7) (8)

Northeast Midwest South West 0.1% 1% 10%

Innovation Shock × Post 32.727*** 40.194*** 26.937*** 32.514*** 33.336*** 94.663*** 18.948*** 3.958***

(2.610) (4.018) (2.613) (2.633) (2.802) (8.056) (1.384) (0.207)

District-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

District-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes

Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Number of Counties 2101783 1942416 1346809 1177807 1892929 2101824 2101250 2093047

Number of Observations 51263 47376 32849 28727 46169 51264 51250 51097

Mean Dep. Var. 0.772 0.511 0.730 1.241 0.765 0.772 0.752 0.615

Table D.8. Double and Triple Differences Effect of Synthetic Innovation Shocks on Subse-
quent US Innovation

Notes. This table reports the effect of synthetic innovation shock on US innovation. These coefficients are not in-

terpreted as causal but as evidence that synthetic shocks capture relevant variation in county-technology-specific

patenting activity. The unit of observation is a county-technology class pair observed at a yearly frequency be-

tween 1900 and 1939. The baseline treatment is an interaction between an innovation shock and a post-shock

indicator. An innovation shock occurs when the residualized patenting activity in a given county technology is in

the top 0.5% of the overall distribution of residualized values. Because the setting is staggered, all regressions are

estimated using the methodology of Borusyak et al. (2021). Column (1) reports the estimate for the entire panel

of counties; in columns (2), (3), (4), and (5), we exclude counties in, respectively, the North-East, Midwest, South,

and West Census Bureau regions. In columns (6), (7), and (8), instead, we consider different thresholds for the

definition of innovation shocks at the top 0.1%, 1%, and 10% of the overall distribution of residualized patents, re-

spectively. All regressions include county-by-year, county-by-technology class, and technology class-by-year fixed

effects. Standard errors, clustered at the county level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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D.6 Figures
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Figure D.1. Flexible Difference-in-Differences Estimated Effect of Tariff Reform on Inno-
vation

Notes. This figure reports the estimated dynamic treatment effects of increased US tariff rates on innovation in

Britain. The unit of observation is a district-technology class pair observed at a yearly frequency between 1920

and 1939. The dependent variable is the number of patents. The independent variable is the interaction between

knowledge exposure over 1910–1920 and year dummies. The last year before the Reform, 1929, is the baseline

category. The blue dots report the estimated treatment effects for technology classes targeted by the Act; the red

dots restrict the sample to non-treated technology classes. We define a class as “targeted” if its average tariff rate

increases by more than 50% after the Smoot-Hawley Act. Regressions include district-by-class and year fixed ef-

fects. Standard errors, clustered at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Figure D.2. Flexible Triple Differences Estimated Effect of the Influenza Pandemic on US
Innovation

Notes. These figures report the dynamic treatment effects of exposure to the Great Influenza Pandemic on innova-

tion in the US. The units of observation are county-technology class pairs; units are observed at a yearly frequency

between 1900 and 1939. The dependent variable is the number of patents. The treatment is an indicator equal

to one for pharmaceutical patents and districts in the top quartile of the excess mortality distribution. The graph

displays the interaction coefficients between the treatment and biennial time dummies, where the last dummy

before the pandemic—1916–1917—serves as the baseline category. Excess mortality is computed as the average

number of deaths during the pandemic over the average number of deaths in the three years before the pandemic.

The black dashed line indicates the timing of the treatment. The regression includes county-by-technology class,

technology class-by-biennial, and county-by-biennial fixed effects. Standard errors are two-way clustered by dis-

trict and technology class; bands report 95% confidence intervals.

◀ Back: Empirical Strategy ◀ Back: Results ◀ Back: Appendix 5 – Robustness
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Figure D.3. Long-Run Association Between Knowledge Exposure and Subsequent Innova-
tion Activity, 1940–2020

Notes. This figure reports the correlation between knowledge exposure in the period 1900–1930 and subsequent

innovation activity. The unit of observation is a district-technology class pair. Units are observed at a biennial fre-

quency between 1940 and 2015. Each dots report the coefficient of an interaction term between—time-invariant—

knowledge exposure and biennial time dummies. The last biennial, 2014–2015, serves as the baseline category.

The model includes district-by-technology class and decade fixed effects. Standard errors are clustered at the dis-

trict level. Bands report 95% confidence intervals.
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E Robustness Analysis

This section provides details on the technical implementation of the analyses discussed in the main text

and briefly describes the exercises we perform to ensure the results’ robustness.

E.1 Alternative Baseline Specifications

In this section, we list and comment on the alternative specifications of equation (2) that we estimate in

the main text.

E.1.1 Alternative Dependent Variables

In the principal analysis, we use the raw number of patents at varying levels of aggregation as the de-

pendent variable. We thus follow Chen and Roth (2022), who note that under transformations of the de-

pendent variable defined at zero—as would be our case, to avoid dropping zero-patents observations—,

the estimates of the average treatment effect are scale-dependent. Since it is common practice in the

innovation literature to take the log-transformation, in Table E.1, we show that the results are robust

using a battery of alternative transformations.

E.1.2 Alternative Definitions of Knowledge Exposure

In Table E.2, we employ four alternative measures of knowledge exposure. First, we take the log of the

baseline. Second, we construct a measure that fixes bilateral emigrant flows:

Knowledge Exposure2𝑖𝑘,𝑡 =
∑︁
𝑗

(
Patents 𝑗𝑘,𝑡
Patents 𝑗,𝑡

× Emigrants𝑖→ 𝑗,1880

)
(E.1)

which, compared to the main measure, restricts assortative matching to the first decade of the analysis.

Third, we define the mirror measure that holds fixed specialization patterns across counties:

Knowledge Exposure3𝑖𝑘,𝑡 =
∑︁
𝑗

(
Patents 𝑗𝑘,1880
Patents 𝑗,1880

× Emigrants𝑖→ 𝑗,𝑡

)
(E.2)

Compared to the main measure, this ensures that knowledge exposure does not conflate variation in

patenting activity across counties determined or influenced by English immigrants. Finally, we define

an alternative measure that leverages the stock, instead of the flow of patents issued:

Knowledge Exposure4𝑖𝑘,𝑡 =
∑︁
𝑗

[∑︁
𝜏≤𝑡

(
Patents 𝑗𝑘,𝜏
Patents 𝑗,𝜏

)
× Emigrants𝑖→ 𝑗,𝑡

]
(E.3)

The idea behind (E.3) is that specialization can be defined in terms of the cumulative number of patents

filed before the given period. In Table E.2, we show that all these measures yield quantitatively similar

results.
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E.1.3 Alternative Fixed Effects

In the main text, we report the results for a specification that includes district-by-time and technology

class-by-time fixed effects. These are intended to capture time-varying unobserved heterogeneity at the

district technology levels that we do not observe. In Table E.3, we show that the—OLS and 2SLS—results

are robust when including a wide array of alternative fixed effects. First, in columns (1) and (6), we re-

port the unconditional correlation between innovation and knowledge exposure. This documents that

knowledge exposure alone explains a sizable (30%) share of the variation in patenting activity. Then,

in columns (2–5) and (7–10), we incrementally include additional fixed effects and show that the signif-

icance and magnitude of the coefficients remain very stable. In particular, in columns (5) and (10), we

saturate the model with all couples of fixed effects to non-parametrically control for heterogeneity at

the district-time, technology-time, and district-technology levels. The results are confirmed even in this

demanding specification.

E.2 Instrumental Variable Strategy

This section discusses how we construct the county-level shocks necessary to compute the predicted

bilateral flows, as described in section 4. We first present the strategy to construct the shocks for the

main railway-based instrument. Then, we explain how we compute the shocks for the additional, leave-

out instrument.

E.2.1 Railway-Based Instrument

The baseline instrument leverages county-level immigration shocks obtained from variations in the con-

ditional timing when each county was connected to the US railway network. This strategy closely mimics

the instrument developed by Sequeira et al. (2020) to estimate the long-run effect of immigration in the

US.

To construct such shocks, we follow a two-step procedure. We first estimate the following zero-stage

equation:

Immigrant Share 𝑗,𝑡 = 𝛼 𝑗 + 𝛼𝑡 + 𝛽Immigrant Share 𝑗,𝑡−1 + 𝛾𝐼Rail
𝑗,𝑡−1+

+ 𝛿
(
𝐼Rail
𝑗,𝑡−1 × Immigrant Flow𝑡−1

)
+ 𝜁

(
Industrialization𝑡−1 × 𝐼Rail

𝑗,𝑡−1

)
+

+ 𝜂
(
GDP Growth𝑡−1 × 𝐼Rail

𝑗,𝑡−1

)
+ 𝑋

⊺
𝑗,𝑡−1Θ + 𝜀 𝑗,𝑡

(E.4)

where (Immigrant Share) is the share of foreign-born individuals, 𝐼Rail
𝑗,𝑡

is a dummy variable returning

value one if county 𝑗 is connected to the railway network in decade 𝑡, and zero otherwise, (Immigrant Flow)

is the aggregate immigration inflow computed from Willcox (1928), (Industrialization) is an index of

industrial production computed by Davis (2004), and annual average GDP growth is obtained from Mad-
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dison (2007) data. The other terms control for confounding factors and non-random connections to the

railway network. The term 𝑋 includes log-population density, lagged urbanization, and an interaction be-

tween lagged urbanization and lagged aggregate immigrant flow. The core of the identification strategy

that we borrow from Sequeira et al. (2020) is to exploit variation generated by the interaction between

aggregate immigration inflows and connection to the railway network (𝛿). The underlying idea is that

connection to the railway only induces a larger immigrant inflow if it occurs during a period of high

immigration. If this reasoning holds, the estimate of 𝛽 should be close to zero, and that of 𝛿 should be

positive. We confirm these predictions in Appendix Table D.1.

We construct a synthetic series of county-level time-varying immigration shocks from equation (E.4)

as follows: �Immigrant Share 𝑗,𝑡 = 𝛿
(
𝐼Rail
𝑗,𝑡−1 × Immigrant Flow𝑡−1

)
(E.5)

where 𝛿 is simply the OLS estimates from the previous model. We thus generate a set of county-level

immigration shocks that are orthogonal to economic development and other characteristics that may in-

duce sorting into the US. Variation, in other words, is solely due to the timing when a county is connected

to the railway network.

E.2.2 Alternative Instrumental Variable

As further robustness to the railway instrument, we develop a simple leave-out instrument that borrows

heavily on the literature that uses shift-share instruments to estimate the effects of immigration (e.g.

Card, 2001; Tabellini, 2020). The rationale that underlies this approach is that if assortative matching

across counties by British immigrants is the main threat to identification in the baseline regression, then

it is possible to leverage the distribution of immigrants from other countries to construct county-level

immigration shocks that yield consistent estimates because they do not reflect such assortative matching

effects.

In practice, let 𝜔𝑀
𝑗

be the share of immigrants from country 𝑀 that settle in county 𝑗 in the period

1860-1870, i.e., before the beginning of the analysis years. We then compute the aggregate inflow of

immigrants from country 𝑀 in each subsequent decade and construct the predicted immigrant inflows

as �Immigrant Share 𝑗,𝑡 =
1

Population 𝑗,𝑡

∑︁
𝑀≠UK
𝑀∈M

(
𝜔𝑀

𝑗 × Immigrant Inflow𝑀
𝑡

)
(E.6)

where M is a set of origin countries. Both (E.5) and (E.6) yield a set of county-specific immigration shocks

that do not conflate the immigration patterns of the British. They leverage very different sources of vari-

ation, though, which enables us to use the resulting instruments jointly and perform over-identification

tests.
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We allow multiple sets of origin countries M. The baseline exercise, whose first-stage relevance is

shown in Table E.7 and results are displayed in Table E.8, collates all countries except for the UK.73 To ac-

count for possible correlation between British immigrants and those from other nationalities, however,

we vary the set of included countries in Table E.9. In particular, we drop all countries in Northern Eu-

rope (column 3), which may have been more similar to England and Wales. Moreover, in column (6), we

only include non-European countries and show that results hold nonetheless. The coefficients remain

relatively stable across all specifications, indicating the possibility that assortative matching may be a

quantitatively mild issue.

E.2.3 Tests on Instrument Validity

The validity of the shift-share instrument for knowledge exposure that we construct hinges on the ex-

ogeneity of the shocks constructed using either (E.5) or (E.6), following Borusyak et al. (2022). In prac-

tice, they advise conducting two types of falsification tests. First, shocks should be orthogonal to ob-

served county-level characteristics. Second, the instrument should not be systematically correlated with

district-level observable variables. The first test provides evidence of the exogeneity of the shocks, while

the second should support the exclusion restriction that underlies the instrument.

We perform the first exercise in Figure E.3. Panel (A) displays the correlation of the observed immi-

gration shares with county-level observable characteristics. As expected, immigration is not random as

it tends to be concentrated in larger counties, which also display higher patenting activity. In panels (B)

and (C), we report the correlation between the predicted immigrant shares using the railway-based and

the leave-out approaches, respectively. We fail to detect a statistically significant correlation between

the so-constructed immigrant shares and the large majority of county-level observable variables.74 This

provides reassuring evidence in favor of the validity of the instruments.

We report the second exercise in Figure E.4. Each dot displays the correlation between district-

level observable variables and actual, railway-based, and leave-out emigration in panels (A), (B), and

(C), respectively. Unsurprisingly, districts featuring higher emigration flows are larger, produce more

patents, and have a larger share of the population working in agriculture and textiles. On the other hand,

synthetic out-migration, whether constructed using the railway or the leave-out shocks, is not correlated

with any such variables. Once more, we interpret these results as evidence supporting the validity of the

shift-share research design.

73In Figure E.2 we report binned scatter plots of the association between predicted and actual knowledge exposure using the two

instruments.
74Even when the correlation remains significant, the standardized beta coefficient is substantially lower than in the benchmark

panel (A).
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E.3 Shock Propagation

This section describes the technical definition of the synthetic innovation shocks and exposure to the

influenza pandemic, along with two falsification exercises and several sensitivity analyses.

E.3.1 Details on the Construction of the Synthetic Shocks

We define a synthetic innovation shock as an unusual deviation from the number of patents granted in

a given county, technology class, and year. Formally, we estimate the following fixed-effects regression:

Patents 𝑗𝑘,𝑡 = 𝛼 𝑗×𝑘 + 𝛼𝑘×𝑡 + 𝛼 𝑗×𝑡 + 𝜀 𝑗𝑘,𝑡 (E.7)

where 𝑗, 𝑘, and 𝑡 denote a county, technology class, and year respectively, and 𝛼 is the associated fixed

effect. In particular, we include county-by-year fixed effects to remove fluctuations in patenting activity

due to, for instance, economic growth. We remove technology-by-year fixed effects to ensure that the

shocks do not reflect aggregate changes in the propensity to patent in a given class. Finally, we average

out county-by-class fixed effects to remove asymmetries due to initial specialization. We then construct

a series of residualized innovation activity from the residuals of (E.7).

In the baseline analysis, we define an innovation shock as an observed residualized patenting ac-

tivity in the top 0.1% of the overall distribution. Let Γ(·) be the cumulative distribution of the resid-

uals of regression (E.7). Then, the set of shocks 𝜉(𝜏), for 𝜏 = 0.001, is given by the set 𝜉(𝜏) = {𝜉 ∈

supp(Γ) | Γ(𝜉) − Γ(𝜏) ≥ 0}. In Table E.11, we use two other threshold values of 𝜏 (1% and 0.5%). We find

that the average treatment effect decreases as 𝜏 increases. This is compelling since larger 𝜏’s flag smaller

residualized patenting activity as instances of treatment. In Table D.8, we show the “effect” of synthetic

shocks on US innovation. This is not a causal effect but rather a measure of the relevance of such shocks.

There is a strong and positive increase in the number of patents after the shock is observed, and this

also holds excluding specific areas (columns 2–5). In columns (6–8), we show that larger levels of 𝜏 are

associated with a lower increase in patenting.

E.3.2 Details on the Construction of the Influenza Shock

To construct exposure to the influenza across counties, we follow Berkes et al. (2023). From the mortality

statistics collected by the Bureau of Census, we define a metric of excess deaths as the ratio between

average deaths during the pandemic (1918–1919) relative to the average in the preceding three years.75

Formally, we have

Excess Deaths 𝑗 =
1
2
∑1919

𝑡=1918 Deaths 𝑗,𝑡
1
3
∑1917

𝑡′=1915 Deaths 𝑗,𝑡′
(E.8)

75Due to data limitations, this is the pre-pandemic period that maximizes the sample size. Mortality statistics thus allow covering

60% of the US population.
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We then recast it as a binary variable equal to one if county 𝑗 is in the top 25% of the excess deaths

distribution to avoid issues of continuous treatment (Callaway and Sant’Anna, 2021).

The baseline estimation equation for US counties is then

Patents 𝑗𝑘,𝑡 = 𝛼 𝑗×𝑘 + 𝛼𝑘×𝑡 + 𝛼 𝑗×𝑘 + 𝛿 (Excess Deaths𝑐 × Pharma𝑘 × Post𝑡) + 𝜀 𝑗𝑘,𝑡 (E.9)

where Pharma𝑘 is an indicator variable returning value one if 𝑘 is pharmaceutical patents, and zero

otherwise, and Post𝑡 is an indicator variable returning value one for years after 1918, and zero other-

wise. Figure D.2 reports the associated flexible triple differences estimates, which, with no evidence of

statistically significant pre-treatment coefficients, suggests that the influenza had a strong, positive, and

significant effect on pharmaceutical innovation in the US.

E.3.3 Robustness of the Synthetic Shock Analysis

We perform two main exercises to ensure that the results using the synthetic shocks are robust. First,

in Figure E.7, we check that the estimated effect of US innovation shocks on UK innovation remains

significant and is quantitatively consistent under different estimators that allow for staggered roll-out of

the treatment across units. The estimated ATE remains significant, and its magnitude is preserved under

various estimators.

Second, in Table E.11, we vary two margins along which a district is considered to be treated. First, as

previously discussed, we consider different thresholds 𝜏 (1%, 0.5%, and the baseline 0.1%) above which

we flag synthetic innovation shocks. Reassuringly, larger levels 𝜏, which require a lower marginal in-

crease in patenting to flag a synthetic shock, lead to smaller ATEs. This is consistent with the idea that

larger innovation shocks in the US should lead to larger innovation shocks in the UK. Second, we vary the

threshold of emigration that we impose for a district to be considered exposed to the innovation shock.

In our main analysis, we consider a district exposed to the innovation shock in a given county if it is in

the top quartile of the distribution of emigration to that county. We consider two additional thresholds

(top 50% and top 90%). We find that the baseline result is qualitatively robust to all such thresholds.

Moreover, we confirm that larger exposure thresholds lead to larger estimated ATEs. This suggests that

the more intense the previous migration tie between a county and a district, the stronger the diffusion

effect of county-level shocks on district-level innovation.

E.3.4 Robustness of the Influenza Shock Analysis

In Table E.12, we perform several exercises to gauge the robustness of the effect of UK exposure to ex-

cess mortality in the US during the Great Influenza pandemic. In columns (1) and (2), we report the

double-difference estimates that compare innovation in pharmaceuticals in districts with high and low

exposure to counties with high excess mortality. Compared to the baseline triple-difference model, these
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estimates do not include non-pharmaceutical innovation in the control group. The results of this exercise

are quantitatively comparable with the baseline model. In column (3), we report the result of a triple-

difference model that does not discretize district-level exposure to US counties. Columns (4–7), instead,

restrict the sample by excluding the top-patenting areas. The results remain consistent throughout these

specifications.

E.3.5 Shock Falsification Checks

The rationale for the analysis discussed in the main text (table 3 and Figure 5) and thus far is that the

influenza only impacted patenting in pharmaceutical patents in the US. If that is the case, then this would

ignite an innovation shock that was localized in areas that were more exposed to the influenza, and that

could reverberate in the UK to districts whose emigrants had settled in such areas.

We test this assumption in Figure E.6a. Each dot reports an estimated 𝛿 coefficient of equation (E.9),

except that the treated technology is reported in each row. Thus, the exclusion restriction would require

that each coefficient was not statistically different from zero, except for pharmaceuticals. This assump-

tion is confirmed in the data. The ATE for pharmaceuticals is the only one that is positive, significant, and

quantitatively large. Figure E.6a thus implies that we expect to observe an increase in pharmaceutical

patents only, and only in districts whose emigrants had settled in areas that were more severely exposed

to the pandemic.

We test this in Figure E.6b, in which we estimate the baseline triple-difference specification of the

main text, except that the treated technology is reported in each row, as before. While estimates are

noisier here, we confirm that the estimated ATE for pharmaceuticals is the largest and statistically sig-

nificant across classes, as expected. Overall, Figure E.6 thus provides convincing evidence that (i) the

influenza fostered innovation in pharmaceuticals only in the US, and (ii) that districts whose emigrants

had settled in areas that were more severely exposed to the influenza display higher innovation activity

in pharmaceuticals.
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E.4 Tables

Level of Patents Share of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Baseline ln(·) ln(1 + ·) ln(𝜀 + ·) arcsinh(·) Share ln(·) ln(1 + ·) ln(𝜀 + ·) arcsinh(·)

Panel A. OLS Estimates

Knowledge Exposure 1.342∗∗∗ 0.015∗∗∗ 0.067∗∗∗ 0.142∗∗∗ 0.082∗∗∗ 0.005∗∗∗ 0.015∗∗∗ 0.004∗∗∗ 0.169∗∗∗ 0.005∗∗∗

(0.143) (0.002) (0.007) (0.016) (0.009) (0.001) (0.002) (0.000) (0.020) (0.001)

R2 0.772 0.802 0.824 0.766 0.813 0.330 0.625 0.344 0.523 0.334

Std. Beta Coef. 0.299 0.101 0.396 0.495 0.407 0.411 0.139 0.439 0.629 0.418

Panel B. Reduced-Form Estimates

Knowledge Exposure 0.037∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.000∗∗∗

(0.007) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R2 0.800 0.811 0.816 0.752 0.805 0.347 0.651 0.358 0.510 0.350

Std. Beta Coef. 0.075 0.032 0.043 0.027 0.039 0.046 0.043 0.046 0.022 0.046

Panel C. Two-Stage Least Square Estimates

Knowledge Exposure 1.224∗∗∗ 0.018∗∗∗ 0.031∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 0.002∗∗∗ 0.018∗∗∗ 0.002∗∗∗ 0.027∗∗∗ 0.002∗∗∗

(0.195) (0.005) (0.005) (0.007) (0.006) (0.000) (0.005) (0.000) (0.008) (0.000)

K-P F-stat 109.826 83.266 109.826 109.826 109.826 109.826 83.266 109.826 109.826 109.826

Std. Beta Coef. 0.296 0.116 0.171 0.108 0.153 0.181 0.158 0.181 0.087 0.181

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11268 8475 11268 11268 11268 11268 8475 11268 11268 11268

N. of Observations 67549 36290 67549 67549 67549 67549 36290 67549 67549 67549

Mean Dep. Var. 10.392 1.795 1.137 -0.005 1.400 0.051 -2.946 0.046 -4.636 0.050

Table E.1. Knowledge Exposure and Innovation: Alternative Dependent Variables

Notes. This table displays the association between innovation and exposure to US knowledge using alternative

transformations of the dependent variable. The unit of observation is a district-technology class pair, observed at

a decade frequency between 1880 and 1939. In columns (1–5), the dependent variable is the number of patents;

in columns (6–10), the dependent variable is the share of patents in a given technology, normalized by the total

number of patents. In columns (1) and (6), we do not transform the dependent variable; in columns (2) and (7), we

take the log; columns (3) and (8) report the estimates using log(1+), which avoids dropping zeroes; in columns (4)

and (9) we take log(0.01+) of the dependent variable; columns (5) and (10) report the estimates using the inverse

hyperbolic sine. The main explanatory variable is knowledge exposure. In Panel A, we estimate the correlation

through OLS; in Panel B, we report the reduced-form association between the instrument for knowledge exposure

and innovation; in Panel C, we display the two-stage least-squares estimates. Each model includes district-by-

decade and district-by-technology class fixed effects. Standard errors are reported in parentheses and are clustered

at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.

◀ Back: Results ◀ Back: Appendix 5 – Robustness
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Dependent Variable: N. of Patents

(1) (2) (3) (4) (5)

Knowledge Exposure 1.342∗∗∗

(0.143)

ln(1 + Knowledge Exposure) 4.175∗∗∗

(0.228)

Fixed-Emigrants Knowledge Exposure 2.610∗∗∗

(0.300)

Fixed-Patents Knowledge Exposure 0.063∗∗∗

(0.015)

Cumulative Knowledge Exposure 0.136∗∗

(0.067)

District-Decade FE Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes

N. of District-Class 11268 11268 11268 11268 11268

N. of Observations 67549 67549 67547 67555 67549

R2 0.772 0.766 0.770 0.765 0.764

Mean Dep. Var. 10.392 10.392 10.393 10.392 10.392

Std. Beta Coef. 0.299 0.119 0.249 0.104 0.017

Table E.2. Knowledge Exposure and Innovation: Alternative Measures of Knowledge Expo-
sure

Notes. This table displays the association between innovation and exposure to US knowledge, using alternative

transformations of knowledge exposure. The unit of observation is a district-technology class pair, observed at a

decade frequency between 1880 and 1939. In column (1), we report the baseline estimate. In column (2), we take

knowledge exposure in log terms, adding one to avoid dropping zeros since the baseline measure is defined as

non-negative. In column (3), we fix bilateral district-county bilateral exposure shares as the number of emigrants

from the given district to the given county in the decade 1870-1880. In column (3), instead, we fix county-level

specialization as the share of patents in a given field granted in the decade 1870-1880 only. In column (5), for a

given decade, we measure specialization as the sum of patents obtained until the end of that decade relative to

the total number of patents obtained until the end of that decade. The measure used in column (5) thus considers

the cumulative patent stock instead of its decade-on-decade flow. The main explanatory variable is knowledge

exposure. Each model includes district-by-decade and district-by-technology class fixed effects. Standard errors

are reported in parentheses and are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Dependent Variable: N. of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) 10)

Panel A. Correlational Estimates

OLS Poisson

Knowledge Exposure 2.393∗∗∗ 1.947∗∗∗ 1.936∗∗∗ 1.942∗∗∗ 1.241∗∗∗ 0.038∗∗∗ 0.011∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.010∗∗∗

(0.212) (0.194) (0.184) (0.191) (0.149) (0.004) (0.002) (0.003) (0.003) (0.002)

R2 0.284 0.431 0.539 0.547 0.781 0.226 0.718 0.749 0.760 0.864

Std. Beta Coef. 0.533 0.433 0.431 0.432 0.276 0.303 0.084 0.112 0.109 0.080

Panel C. Instrumental Variable Estimates

Reduced Form Two-Stage Least Squares

�Knowlegde Exposure 0.158∗∗∗ 0.080∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.033∗∗∗

(0.012) (0.009) (0.010) (0.012) (0.009)

Knowledge Exposure 2.053∗∗∗ 1.490∗∗∗ 0.867∗∗∗ 0.779∗∗∗ 1.097∗∗∗

(0.157) (0.167) (0.192) (0.208) (0.271)

R2 0.104 0.385 0.501 0.509 0.808 0.293 0.111 0.065 0.059 0.028

K-P F-stat 184.700 96.871 169.304 132.033 46.312

Std. Beta Coef. 0.322 0.164 0.083 0.083 0.068 4.196 3.045 1.772 1.591 2.243

District FE No Yes – – – No Yes – – –

Decade FE No Yes – – – No Yes – – –

Class FE No Yes Yes – – No Yes Yes – –

District-Decade FE No No Yes Yes Yes No No Yes Yes Yes

Class-Decade FE No No No Yes Yes No No No Yes Yes

District-Class FE No No No No Yes No No No No Yes

N. of District-Class 11268 11268 11268 11268 11268 11268 11250 11250 11250 10081

N. of Observations 67549 67549 67549 67549 67549 67549 67474 65946 65946 59703

Mean Dep. Var. 10.392 10.392 10.392 10.392 10.392 10.392 10.404 10.645 10.645 11.758

Table E.3. Knowledge Exposure and Innovation: Alternative Sets of Fixed Effects

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of obser-

vation is a district-technology class pair, observed at a decade frequency between 1880 and 1939. The dependent

variable is the number of patents. The main explanatory variable is knowledge exposure. In Panel A, in columns

(1–5), we estimate the correlation through OLS; in columns (6–10), we estimate the model as a Poisson regression to

account for the many zeros in the data; columns (1–5) in Panel B report the reduced-form association between the

instrument for knowledge exposure and innovation; columns (6–10) report the two-stages least square estimates.

Columns (1) and (6) reports the unconditional regressions; in columns (2) and (7), we include district, decade, and

technology class fixed effects; columns (3) and (8) add district-by-decade fixed effects; in columns (4) and (9) we

include district-by-decade and class-by-decade fixed effects; models in columns (5) and (10) are saturated with all

couples of fixed effects. Standard errors are reported in parentheses and are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Quality Weight Breakthrough 20% Breakthrough 10% Breakthrough 5%

(1) (2) (3) (4) (5) (6) (7) (8)

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Panel A. Unadjusted Quality Indicator

Knowledge Exposure𝑡 1.433∗∗∗ 3.812∗∗∗ 0.706∗∗∗ 1.330∗∗∗ 0.387∗∗∗ 0.697∗∗∗ 0.228∗∗∗ 0.328∗∗∗

(0.254) (1.206) (0.134) (0.342) (0.078) (0.194) (0.048) (0.100)

R2 0.822 -0.038 0.660 -0.049 0.585 -0.033 0.519 -0.037

Mean Dep. Var. 16.327 12.647 3.842 2.103 1.994 1.027 1.003 0.409

Std. Beta Coef. 0.265 0.908 0.408 1.491 0.366 1.443 0.324 1.270

Panel B. Adjusted Quality Indicator (Net of Class-Year FE)

Knowledge Exposure𝑡 0.051∗∗∗ 0.119∗∗∗ 0.389∗∗∗ 0.808∗∗∗ 0.229∗∗∗ 0.449∗∗∗ 0.110∗∗∗ 0.436∗∗∗

(0.017) (0.043) (0.083) (0.186) (0.059) (0.126) (0.033) (0.100)

R2 0.464 -0.055 0.649 -0.106 0.580 -0.108 0.519 -0.228

Mean Dep. Var. 0.284 0.168 2.698 1.688 1.621 0.903 0.850 0.460

Std. Beta Coef. 0.180 0.991 0.321 1.261 0.261 1.209 0.188 1.966

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11263 11198 11263 11198 11263 11198 11263 11198

N. of Observations 33764 22396 33764 22396 33764 22396 33764 22396

K-P F-stat 44.652 44.652 44.652 44.652

Table E.4. Return Innovation Accounting for Patent Quality

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of ob-

servation is a district-technology class pair, observed at a decade frequency between 1900 and 1939. The main

explanatory variable is knowledge exposure. The dependent variables capture the “quality” of patents. To mea-

sure quality, we adapt the text-based indicator developed by Kelly et al. (2021). The sample excludes the years

1880–1899 because, for the subsequent years, we only have abstracts. The quality measure is thus evaluated on

abstracts. In columns (1–2), the dependent variable is the number of patents, weighted by their quality. In columns

(3–8), following Kelly et al. (2021), we only count patents in the top 20%, 10%, and 5% of the overall quality distri-

bution. Odd columns display the OLS correlation between knowledge exposure and the dependent variables; Even

columns report the associated two-stage least-square estimates. In panel (A), the quality measure is not adjusted;

in panel (B), we remove class-by-year fixed effects in the quality measure following Kelly et al. (2021) to control for

fashion effects in language. All regressions include district-by-decade and district-by-technology class fixed effects.

Standard errors are reported in parentheses and are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Quality Weight Breakthrough 20% Breakthrough 10% Breakthrough 5%

(1) (2) (3) (4) (5) (6) (7) (8)

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Panel A. Unadjusted Quality–Weighted Knowledge Exposure

Knowledge Exposure (Weighted) 0.003∗∗ 0.233

(0.001) (0.179)

Knowledge Exposure (top 20%) 0.532∗∗∗ 0.278∗∗∗

(0.048) (0.081)

Knowledge Exposure (top 10%) 0.500∗∗∗ 0.189∗∗

(0.047) (0.079)

Knowledge Exposure (top 5%) 0.446∗∗∗ -0.037

(0.047) (0.072)

Panel B. Adjusted Quality-Weighted Knowledge Exposure (Net of Class-Year FE)

Knowledge Exposure (Weighted) 0.002 0.205∗∗∗

(0.002) (0.070)

Knowledge Exposure (top 20%) 0.531∗∗∗ 0.332∗∗∗

(0.052) (0.084)

Knowledge Exposure (top 10%) 0.495∗∗∗ 0.265∗∗∗

(0.049) (0.077)

Knowledge Exposure (top 5%) 0.486∗∗∗ 0.093

(0.050) (0.075)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11160 11106 11160 11106 11160 11106 11160 11106

N. of Observations 66901 55507 66901 55507 66901 55507 66901 55507

K-P F-stat 1.579 117.459 136.236 156.128

Table E.5. Return Innovation Accounting for Patent Quality of US Patents

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of ob-

servation is a district-technology class pair, observed at a decade frequency between 1870 and 1939. The main

explanatory variable is knowledge exposure, weighted by the quality of US patents. The dependent variable is the

number of patents, in logs. To measure quality, we adapt the text-based indicator developed by Kelly et al. (2021).

The first row in each panel weights patents by their quality; the second, third, and fourth rows only count patents

in the top 20%, 10%, and 5% of the overall quality distribution, respectively. In panel (A), the quality measure is not

adjusted; in panel (B), we remove class-by-year fixed effects in the quality measure following Kelly et al. (2021) to

control for fashion effects in language. All regressions include district-by-decade and district-by-technology class

fixed effects. Standard errors are reported in parentheses and are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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OLS Reduced Form Two-Stage Least-Squares

(1) (2) (3) (4) (5) (6)

Knowledge Exposure𝑡 0.170∗∗∗ 0.068∗∗∗

(0.012) (0.021)

Knowledge Exposure𝑡−1 0.176∗∗∗ 0.327∗∗∗

(0.021) (0.046)�Knowledge Exposure𝑡 0.004∗∗∗

(0.001)�Knowledge Exposure𝑡−1 0.023∗∗∗

(0.003)

District-Decade FE Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes

N. of District-Class 11268 11266 11214 11214 11214 11214

N. of Observations 33798 22532 33642 22428 33640 22428

K-P F-stat 134.004 154.011

R2 0.841 0.914 0.835 0.912 0.021 0.014

Mean Dep. Var. 1.250 1.759 1.256 1.767 1.256 1.767

Std. Beta Coef. 0.179 0.165 0.026 0.133 0.071 0.306

Table E.6. Effect of Exposure to US Technology on Innovation in Great Britain: Patents
with Firm Assignee

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of ob-

servation is a district-technology class pair, observed at a decade frequency between 1880 and 1900. The main

explanatory variable is knowledge exposure. The dependent variable is the number of patents with at least one

firm listed as an assignee. In columns (1–2), we estimate the OLS correlation with the observed measure of knowl-

edge exposure; in columns (3–4), we estimate the reduced-form association with the railway-based instrument of

knowledge exposure through OLS; columns (5–6) report the two-stage least-squares estimate. Each model includes

district-by-decade and district-by-technology class fixed effects. Standard errors are reported in parentheses and

are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Railway-Based (SNQ) Instrument Leaveout Instrument

Baseline Dropping Districts in... Baseline Dropping Districts in...

(1) (2) (3) (4) (5) (6) (7) (8)

London Lancs S-W London Lancs S-W

Panel A. Dependent Variable: Bilateral Flows

SNQ Migrants 0.007∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)

Leaveout Migrants 0.006∗∗∗ 0.005∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.002) (0.002) (0.002) (0.002)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes

County-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Counties 1736040 1653240 1518000 1625640 1786360 1701160 1562000 1672760

N. of Observations 8399666 7999046 7344700 7865506 10403031 9906861 9096450 9741471

Panel B. Dependent Variable: Knowledge Exposure

SNQ Knowledge Exposure 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000)

Leaveout Knowledge Exposure 0.169∗∗∗ 0.157∗∗∗ 0.159∗∗∗ 0.145∗∗∗

(0.034) (0.036) (0.034) (0.032)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes

Class-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Classes 11322 10782 9900 10602 11304 10764 9882 10584

N. of Observations 56587 53887 49488 52987 67801 64561 59280 63481

Table E.7. First Stage of the Instrumental Variable Estimation

Notes. This table reports the first-stage estimates of the two shift-share instruments we propose. In Panel A, the

observation units are district-county pairs, observed at a decade frequency between 1870 and 1920 (columns 1–4)

and 1930 (columns 5–8). In Panel B, the observation units are district-technology classes, at decade frequency be-

tween 1870 and 1920 (columns 1–4) and 1930 (columns 5–8). In columns (1–4), the predicted number of emigrants

constructed using the railway-based instrument that leverages shocks à la Sequeira et al. (2020); in columns (5–8),

predicted emigrants are constructed using the leave-out instrument. Columns (1) and (5) report the full-sample

estimates; in columns (2) and (6), we exclude districts in the London area; columns (3) and (7) exclude districts

in the Lancashire area; in columns (4) and (8) we drop districts in the South-West. In Panel A, all models include

district-by-decade and county-by-decade fixed effects; in Panel B, regressions include district-by-decade and tech-

nology class-by-decade fixed effects. Standard errors, clustered at the district level, are reported in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Reduced Form TSLS Overidentified TSLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)�Knowledge Exposure 0.007∗

(0.004)�Knowledge Exposure𝑡−1 0.018∗∗∗

(0.006)�Knowledge Exposure𝑡−2 0.029∗∗

(0.012)

Knowledge Exposure 0.093∗ 0.322∗∗∗

(0.051) (0.052)

Knowledge Exposure𝑡−1 0.180∗∗∗ 0.082∗

(0.065) (0.044)

Knowledge Exposure𝑡−2 0.103∗∗ 0.032

(0.041) (0.038)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11196 11196 11196 11196 11196 11196 11196 11196 11196

N. of Observations 55980 44784 33588 55957 44761 33586 55957 44761 33586

R2 0.816 0.831 0.850 0.018 -0.006 -0.002 0.054 -0.001 -0.000

Mean Dep. Var. 1.079 1.202 1.312 1.079 1.203 1.312 1.079 1.203 1.312

Std. Beta Coef. 0.007 0.017 0.015 0.051 0.103 0.055 0.175 0.047 0.017

K-P F-stat 27.303 23.391 248.916 62.737 59.305 198.950

Sargan-Hansen J 24.274 6.131 31.636

Table E.8. Return Innovation Result Using the Leaveout Instrument

Notes. This table reports the estimated return innovation effect estimated using the leave-out instrument. The

unit of observation is a district-technology class pair, observed at a decade frequency between 1880 and 1939.

The dependent variable is the number of patents. The main explanatory variable is knowledge exposure. In

columns (1–3), we report the reduced-form association between knowledge exposure constructed using predicted

emigration flows using the leave-out instrument and the dependent variable; in columns (4–6), we report the

associated two-stage least-squares estimates. In columns (7–9), instead, we exploit the railway and the leave-out

instruments to estimate an over-identified instrumental variable regression. This allows us to report the associated

Sargan-Hansen J-statistic to test the validity of the over-identifying restrictions. The Sargan-Hansen test does not

refute the null that the instruments are valid. Each model includes district-by-decade and district-by-technology

class fixed effects. Standard errors are reported in parentheses and are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Baseline Excluding Immigrants from...

(1) (2) (3) (4) (5) (6)

UK UK + North Eu. UK + South Eu. UK + East Eu. UK + Europe

Panel A. Second-Stage Estimates

Knowledge Exposure 1.849∗∗∗ 0.454∗∗∗ 0.589∗∗∗ 0.428∗∗∗ 0.315∗∗ 0.487∗∗∗

(0.174) (0.125) (0.170) (0.096) (0.160) (0.139)

N. of Observations 78876 78876 78876 78876 78876 78876

Mean Dep. Var. 11.768 11.768 11.768 11.768 11.768 11.768

K-P F-statistic 39.267 30.074 346.557 14.672 52.663

Panel B. First-Stage Estimates

Knowledge Exposure (No Northern Europe + UK) 0.215∗∗∗

(0.039)

Knowledge Exposure (No Southern Europe + UK) 0.889∗∗∗

(0.048)

Knowledge Exposure (No Eastern Europe + UK) 0.481∗∗∗

(0.126)

Knowledge Exposure (No Europe + UK) 3.103∗∗∗

(0.428)

N. of Observations 78876 78876 78876 78876 78876

Mean Dep. Var. 3.063 3.063 3.063 3.063 3.063

District-Decade FE Yes Yes Yes Yes Yes Yes

Technology Class FE Yes Yes Yes Yes Yes Yes

Table E.9. Return Innovation Result Using the Modified Leaveout Instruments

Notes. This table reports the instrumental variable estimates of the effect of knowledge exposure on innovation

using modified versions of the leave-out instrument. The unit of observation is a district-technology class pair,

observed at a decade frequency between 1880 and 1939. The dependent variable is the number of patents. The

explanatory variable is knowledge exposure. In column (1), we report the OLS correlation. In columns (2–6),

we construct predicted bilateral emigrant flows using county-level immigration shocks that exclude immigrants

from different parts of the world: in (2), we exclude only immigrants from UK nations; in (3), we exclude the UK

immigrants along with those from other Northern Europe countries; in (4), we exclude immigrants from the UK

and Southern Europe; in (5), UK and Eastern Europe immigrants are excluded; in (6), we exclude all European

immigrants. Panel A reports the second-stage estimates; Panel B reports the associated first-stage estimates. All

regressions include district-by-decade and technology class fixed effects. Standard errors, clustered at the district

level, are displayed in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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10-Year Similarity log(Similarity) Net of Year-Technology FE

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS RF TSLS OLS RF TSLS OLS RF TSLS

Panel A. Dependent variable: “Copying” (Similarity with Previous US Patents)

Knowledge Exposure𝑡 0.296∗∗∗ 0.122 0.953∗∗∗ 0.935∗∗∗ 0.340∗∗∗ 0.334∗∗∗

(0.045) (0.096) (0.106) (0.151) (0.042) (0.057)�Knowledge Exposure𝑡 0.036 0.276∗∗∗ 0.099∗∗∗

(0.029) (0.051) (0.019)

R2 0.733 0.767 0.003 0.752 0.795 0.046 0.681 0.692 0.023

Mean Dep. Var. 36.221 32.577 32.585 62.691 49.809 49.818 22.720 17.962 17.964

Std. Beta Coef. 0.165 0.016 0.065 0.340 0.101 0.399 0.303 0.089 0.352

Panel B. Dependent Variable: “Originality” (Similarity with Subsequent US Patents w.r.t. Previous US Patents)

Knowledge Exposure𝑡 0.195∗∗∗ 0.270∗∗∗ 0.146∗∗∗ 0.158∗∗∗ 0.053∗∗∗ 0.076∗∗∗

(0.022) (0.038) (0.016) (0.025) (0.006) (0.011)�Knowledge Exposure𝑡 0.080∗∗∗ 0.046∗∗∗ 0.022∗∗∗

(0.013) (0.008) (0.004)

R2 0.684 0.748 0.034 0.752 0.791 0.049 0.571 0.522 0.011

Mean Dep. Var. 11.709 9.049 9.051 9.572 7.628 7.630 3.305 2.635 2.635

Std. Beta Coef. 0.338 0.145 0.583 0.344 0.109 0.439 0.285 0.105 0.422

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11268 11214 11214 11268 11214 11214 11268 11214 11214

N. of Observations 67553 56070 56050 67553 56070 56050 67553 56070 56050

K-P F-stat 103.344 103.344 103.344

Table E.10. Robustness Analysis on the Effect of Exposure to US Technology on the Simi-
larity and Originality of Innovation in Great Britain

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of obser-

vation is a district-technology class pair, observed at a decade frequency between 1880 and 1939. In Panel A, the

dependent variable is the text similarity between UK patents and US patents issued before (“copying”); in Panel

B, the dependent variable is the similarity of UK patents with US patents granted in the subsequent years, over

the similarity of UK patents with US patents granted in the preceding years (“originality”). The similarity measure

is akin to Kelly et al. (2021). In columns (1), (4), and (7) we report the OLS regressions; columns (2), (5), and (8)

report the reduced-form regressions; columns (3), (6), and (9) display the two-stage least-squares coefficients. In

columns (1–3), the dependent variable is the baseline, except that we compute similarities over a ten-year window

compared to the baseline five; in columns (4–6), we take the log of the patent-level similarity measure; in columns

(7–9), remove year-by-technology class fixed effects from the patent-level similarity metrics. Each model includes

district-by-decade and district-by-technology class fixed effects. Standard errors are reported in parentheses and

are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Top 1% Synthetic Shocks Top 0.5% Synthetic Shocks Top 0.1% Synthetic Shocks

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Top 50% Top 75% Top 90% Top 50% Top 75% Top 90% Top 50% Top 75% Top 90%

Innovation Shock (Above 50%) × Post 0.187** 0.299*** 0.617***

(0.083) (0.098) (0.126)

Innovation Shock (Above 75%) × Post 0.224*** 0.377*** 0.617***

(0.080) (0.081) (0.126)

Innovation Shock (Above 90%) × Post 0.326 0.825*** 0.532***

(0.269) (0.229) (0.175)

District-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

District-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes

Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Number of Counties 189586 362024 426147 217975 381438 434687 431467 431467 445120

Number of Observations 5247 9187 10671 6762 9786 10900 10834 10834 11128

Mean Dep. Var. 1.022 1.106 1.586 1.410 1.3 1.686 2.064 2.064 2.020

Table E.11. Triple Differences Estimated Effect of US Synthetic Shocks on UK Innovation:
Alternative Thresholds

Notes. This table displays the effect of US innovation shocks on innovation activity in the UK. The unit of obser-

vation is a district-technology class pair observed at a yearly frequency between 1900 and 1939. The dependent

variable is the number of patents. The treatment variable is equal to one for district-technology class pairs af-

ter a synthetic innovation shock in a given technology class is observed in counties where the district has above

𝑘-percentile emigrants. We consider three different thresholds for 𝑘: above the median, above the top 25%, and

above the top 10%. A synthetic shock is observed whenever the residualized patenting activity in a given county-

technology class pair is in the top ℓ-percentile of the residualized patenting activity distribution. We consider three

such 𝑒𝑙𝑙: top 1%, in columns (1–3), top 0.5%, in columns (4–6), and top 0.1%, in columns (7–9). Since the treatment

timing is staggered, we estimate the models using the imputation estimator developed by Borusyak et al. (2021). All

models include district-by-year, district-by-technology class, and technology class-by-year fixed effects; standard

errors, clustered two-way by district and technology class, are shown in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Double Differences Triple Differences

(1) (2) (3) (4) (5) (6) (7)

No London No Lancs No S/W

Influenza Emigration × Post 0.008∗

(0.004)

1(Q. of Influenza Emigration > 75) × Post 0.980∗∗

(0.463)

Influenza Emigration × Post × Pharma 0.004∗∗

(0.002)

1(Q. of Influenza Emigration > 75) × Post × Pharma 0.584∗∗∗ 0.396∗∗ 0.671∗∗∗ 0.423∗∗

(0.163) (0.139) (0.173) (0.156)

District FE Yes Yes – – – – –

Year FE Yes Yes – – – – –

District-Year FE – – Yes Yes Yes Yes Yes

District-Class FE – – Yes Yes Yes Yes Yes

Class-Year FE – – Yes Yes Yes Yes Yes

N. of District-Class 631 631 10727 10727 10217 9384 10047

N. of Observations 18930 18930 321810 321810 306510 281520 301410

Classes in Sample Pharma Pharma All All All All All

R2 0.544 0.544 0.668 0.668 0.616 0.653 0.679

Mean Dep. Var. 0.927 0.927 0.763 0.763 0.559 0.721 0.706

Std. Beta Coef. 0.082 0.082 0.014 0.016 0.015 0.018 0.010

Table E.12. Double and Triple Differences Estimated Effect of the Great Influenza Pan-
demic in the US on Innovation in the UK: Robustness Analysis

Notes. This table displays the effect of the Great Influenza Pandemic shock on innovation activity in the UK. In

columns (1–2), the observation unit is a district; in columns (3–7), the observation unit is a pair district-technology

class; units are observed at a yearly frequency between 1900 and 1939. The dependent variable is the number of

patents. In column (1), the treatment variable is an interaction between an influenza exposure term equal to the

share of emigrants to counties in the top 25% of the flu-related excess mortality distribution and a post-Influenza

indicator; in column (2), we code exposure as a binary variable equal to one for districts in the top 25% of the

continuous exposure distribution. In columns (3) and (5–7), the treatment term in column (1) is interacted with an

indicator variable for pharmaceutical patents; in column (4), we interact the treatment term in column (2) with

the same pharmaceutical indicator. Regressions in (1–4) report full-sample estimates; in columns (5), (6), and (7),

instead, we drop districts in the London, Lancashire, and South-West areas, respectively. Regressions in columns

(1–2) include district and year fixed effects; regressions in columns (3–7) include district-by-year, technology class-

by-year, and district-by-technology class fixed effects. Standard errors, reported in parentheses, are clustered by

district in columns (1–2) and two-way by district and technology class in (3–7).

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Ordinary Least Squares Reduced Form Two-Stages Least-Squares

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Dependent variable: “Copying” (Similarity with Previous US Patents)

Knowledge Exposure𝑡 0.117∗∗∗ 0.029∗ 0.098∗

(0.024) (0.017) (0.053)

Knowledge Exposure𝑡−1 0.161∗∗∗ 0.029∗∗∗ 0.098∗∗∗

(0.026) (0.006) (0.023)

Knowledge Exposure𝑡−2 0.196∗∗∗ 0.013 0.044

(0.027) (0.015) (0.050)

Mean Dep. Var. 17.043 17.981 19.842 14.906 14.278 19.919 14.910 14.283 19.925

Std. Beta Coef. 0.126 0.140 0.139 0.025 0.030 0.008 0.101 0.121 0.031

R2 0.694 0.569 0.601 0.712 0.712 0.599 -0.002 0.007 0.002

Panel B. Dependent Variable: “Originality” (Similarity with Subsequent US Patents w.r.t. Previous US Patents)

Knowledge Exposure𝑡 0.175∗∗∗ 0.065∗∗∗ 0.219∗∗∗

(0.019) (0.011) (0.032)

Knowledge Exposure𝑡−1 0.084∗∗∗ 0.015∗ 0.050∗

(0.014) (0.008) (0.027)

Knowledge Exposure𝑡−2 0.097∗∗∗ -0.029 -0.099

(0.017) (0.025) (0.087)

Mean Dep. Var. 10.885 13.815 15.851 8.584 12.687 15.913 8.586 12.691 15.918

Std. Beta Coef. 0.341 0.127 0.119 0.132 0.020 -0.030 0.531 0.079 -0.121

R2 0.699 0.672 0.710 0.775 0.718 0.708 0.047 0.006 -0.013

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N. of District-Class 11268 11268 11268 11214 11214 11214 11214 11214 11214

N. of Observations 67553 67553 56299 56070 56070 56070 56050 56050 56050

K-P F-stat 103.344 103.344 103.344

Table E.13. Effect of Exposure to US Technology on the Similarity and Originality of In-
novation in Great Britain

Notes. This table displays the association between innovation and exposure to US knowledge. The unit of obser-

vation is a district-technology class pair, observed at a decade frequency between 1880 and 1939. In Panel A, the

dependent variable is the text similarity between UK patents and US patents issued five years before (“copying”);

in Panel B, the dependent variable is the similarity of UK patents with US patents granted in the subsequent five

years, over the similarity of UK patents with US patents granted in the preceding five years (“originality”). The sim-

ilarity measure is akin to Kelly et al. (2021). In columns (1–3), we estimate the OLS correlation with the observed

measure of knowledge exposure; in columns (4–6), we estimate the reduced-form association with the railway-

based instrument of knowledge exposure through OLS; columns (7–9) report the two-stage least-squares estimate.

Each model includes district-by-decade and district-by-technology class fixed effects. Standard errors are reported

in parentheses and are clustered at the district level.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.

◀ Back: Results Appendix E – Page 82



Synthetic Shocks Great Influenza Pandemic Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Full Sample No London No Lancs No S/W Full Sample No London No Lancs No S/W

Panel A. Copying (Similarity with Previous US Patents)

Synth. Shock × Post × Emigrants 0.266*** 0.169*** 0.328*** 0.259***

(0.063) (0.039) (0.066) (0.066)

Pharma × Post × Emigrants 0.763*** 0.450*** 0.884*** 0.664***

(0.210) (0.179) (0.199) (0.206)

Panel B. Originality (Similarity with Subsequent US Patents w.r.t. Similarity with Previous US Patents)

Synth. Shock × Post × Emigrants 0.416*** 0.238*** 0.580*** 0.375***

(0.140) (0.094) (0.148) (0.144)

Pharma × Post × Emigrants 5.249*** 3.827*** 5.538*** 4.009***

(0.990) (0.868) (1.068) (0.925)

District-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

District-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes

Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Number of Units 393046 382153 343450 375850 429080 408680 375360 401880

Number of Observations 10029 9697 8760 9547 10727 10217 9384 10047

Mean Dep. Var. 0.498 0.376 0.460 0.472 0.791 0.577 0.737 0.733

Table E.14. Triple Differences Effect of Exposure to US Shocks on the Similarity Between
UK and US Innovation

Notes. This table displays the effect of US innovation shocks on the similarity and originality of innovation activity

in the UK compared to US patents. The unit of observation is a district-technology class pair observed at a yearly

frequency between 1900 and 1939. In Panel A, the dependent variable is the text similarity between UK patents and

US patents issued five years before (“copying”); in Panel B, the dependent variable is the similarity of UK patents

with US patents granted in the subsequent five years, over the similarity of UK patents with US patents granted

in the preceding five years (“originality”). The similarity measure is akin to Kelly et al. (2021). In columns (1–4),

the independent variable is an indicator that, for a given district–technology, returns value one after a synthetic

innovation shock in that technology class is observed in at least one county where the district has above-average

out-migration. A synthetic innovation shock is observed whenever the residualized number of patents observed in

the country is in the top 0.5% of the overall distribution. In columns (5–8), the independent variable is an indicator

that returns value one for pharmaceutical patents only and only if emigration from the observed district to counties

in the top quartile of the influenza mortality distribution is in the top quartile across districts. Both models are

triple-difference designs. Models in columns (1–4) are staggered designs and are estimated using the imputation

estimator by Borusyak et al. (2021). In columns (2) and (6), we drop districts in the London area; in columns (3)

and (7), we exclude districts in the Lancashire area; in columns (4) and (8), we drop districts in the South-West

area. All models include district-by-year, district-by-technology class, and technology class-by-year fixed effects;

standard errors, clustered two-way by district and technology class, are shown in parentheses.

∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Baseline Sample Dropping Individuals in...

(1) (2) (3) (4) (5) (6) (7)

London Lancashire South-West

Panel A. All Emigrants

Neighborhood Emigrant × Post 0.120∗∗ 0.146∗∗ 0.133∗∗ 11.846∗ 0.079 0.142∗∗ 0.167∗∗∗

(0.059) (0.068) (0.059) (6.144) (0.065) (0.062) (0.061)

Std. Beta Coef. 0.016 0.019 0.018 0.155 0.011 0.020 0.022

Panel B. Only Non-Return Emigrants

Non-Return Neighborhood Emigrant × Post 0.148∗∗∗ 0.199∗∗∗ 0.160∗∗∗ 14.694∗∗ 0.061 0.172∗∗∗ 0.226∗∗∗

(0.056) (0.062) (0.058) (6.293) (0.061) (0.059) (0.058)

Std. Beta Coef. 0.019 0.025 0.020 0.186 0.008 0.023 0.028

Individual FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes – Yes Yes Yes Yes Yes

Parish × Year FE No Yes No No No No No

Matching No No Yes No No No No

Sample Full Full Full Inventors Full Full Full

N. of Individuals 473112 473112 469585 4224 410327 422230 352064

N. of Observations 9462240 9412502 9391700 84480 8206540 8444600 7041280

Mean Dep. Var. 0.890 0.892 0.893 99.716 0.794 0.836 0.893

S.D. Dep. Var. 40.291 40.337 40.351 414.695 37.439 39.126 41.333

Table E.15. Difference-in-Differences Effect of Neighborhood-Level Out-Migration on In-
novation: Alternative Proximity Threshold

Notes. This table reports the effect of neighborhood out-migration on innovation. The units of observation are in-

dividuals who are observed yearly between 1900 and 1920. In columns (1–3) and (5–7), the sample consists of the

universe of males who did not emigrate over the period and that were at least 18 years old in 1900; in columns (4)

and (8), we restrict the sample to inventors. The dependent variable is the number of patents obtained annually.

In columns (1–4), the sample consists of individuals residing in all England and Wales divisions; in columns (5–7),

we exclude the top tree-patents producing areas: London, Lancashire, and the South-West. In Panel A, the inde-

pendent variable is an indicator that, for a given individual, returns value one after at least one person that was

living in the same neighborhood as the individual migrates to the United States; in Panel B, we restrict to emigrants

that never return in the period of observation. In this context, “neighborhood” refers to emigrants within a range

of 100 meters from the individual in the sample. Each model includes individual and—at least—year fixed effects;

in column (2), we include parish-by-year fixed effects; in column (3), individuals are weighted by their coarsened

exact matching weight. The estimates are obtained using the method discussed in Borusyak et al. (2021) to account

for the staggered roll-out of the treatment across individuals. Standard errors, clustered at the district level, are

reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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(b) Railway-Based Knowledge Exposure

Figure E.1. Alternative Standard Errors Estimators of the Return Innovation Result

Notes. These figures report alternative estimates for the standard errors (SEs) of the regression between the num-

ber of patents and knowledge exposure. The unit of observation is a district-technology pair, observed at a decade

frequency between 1880 and 1930. Models include district-by-technology and decade fixed effects. In Panel E.1a,

the independent variable is measured knowledge exposure; Panel E.1b reports the estimated reduced-form co-

efficient between patents and the railway-based instrument. We report unadjusted SEs, robust to heteroskedas-

ticity (White); clustered at the district, technology class, and two-way by district and technology class; robust to

heteroskedasticity and autocorrelation of order 2 (HAC (2)), order 3 (HAC (3)); robust to heteroskedasticity and au-

tocorrelation, and clustered by decade (HAC (2) - Decade) and two-way by decade and district-by-technology class

(HAC (2) - Decade & (Dist., Tech.). Finally, we also report SEs that account for spatial autocorrelation at various

orders (between 50 and 250 kilometers) following Conley (1999). Bands report 95% confidence intervals.
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Notes. Coefficient = 0.453 (Clust. Std. Err. = 0.034). R2 = 0.806.

(a) Railway-Based Instrument
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Notes. Coefficient = 1.529 (Clust. Std. Err. = 0.256). R2 = 0.773.

(b) UK Innovation

Figure E.2. First Stage Binned Scatter Plot

Notes. These figures are binned scatter plots of the association between actual and predicted knowledge exposure

obtained using the railway-based instrument (Panel E.2a) and the leave-out instrument (Panel E.2b). The unit of

observation is a district-technology class pair, at a decade frequency between 1880 and 1920. Graphs partial out

district-by-decade and technology class fixed effects. We report the associated regression coefficients and standard

errors, clustered at the district level, below each graph.

◀ Back: Appendix 5 – Robustness

Appendix E – Page 86



Agriculture
Chemicals

Construction
Engineer

Metallurgy
Textiles

Liberal Professions
Public Administration

Trade
Transport

Utilities
Income

Population
Whites

England
Ireland

Italy
Sweden
Norway

Germany

Total Patents
Agricultural

Building
Electricity

Engineering
Chemistry

Engine & Pumps
Instruments

Ships & Aeronautics
Textile

Transporting

Employment Sectors

Demographics

Patents

-.1 0 .1 .2 -.1 0 .1 .2 -.1 0 .1 .2

(A) (B) (C)

                                         Correlation Coef. with Immigration

Figure E.3. Shock-Level Balance Tests for Instrumental Variable Validity

Notes. This figure reports the correlation between county-level observable characteristics and the (predicted)

immigrant share. The unit of observation is a county observed at a decade frequency between 1870 and 1920. Panel

(A) refers to the observed immigrant share; Panel (B) refers to the immigrant share predicted from the railway-

based shock constructed from the zero-stage estimates à la Sequeira et al. (2020); Panel (C) refers to the leave-out

shocks used to construct the alternative leave-out instrument. Each dot reports the correlation between the row

variable and the immigrant share, lagged by one decade. Variables are standardized for the sake of readability.

Each model includes county and state-by-decade fixed effects. Standard errors are clustered at the county level.

Bands report 95% confidence intervals.
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Figure E.4. District-Level Balance Tests for Instrumental Variable Validity

Notes. This figure reports the correlation between district-level observable characteristics and the (predicted)

number of emigrants. The unit of observation is a district observed at a decade frequency between 1870 and 1920.

Panel (A) refers to the observed number of emigrants; Panel (B) refers to the predicted emigrant outflow obtained

from the railway-based instrument; Panel (C) refers to the leave-out instrument. Each dot reports the correlation

between the row variable and out-migration, lagged by one decade. Variables are standardized for the sake of

readability. Each model includes district and decade fixed effects. Standard errors are clustered at the county

level. Bands report 95% confidence intervals.
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Figure E.5. Effect of Synthetic Innovation Shocks Across Technology Classes

Notes. This figure reports the effect of synthetic innovation shocks on innovation in the UK by technology class.

Each dot reports one double-differences estimated effect of the baseline exposure treatment with innovation; in

each row, the treatment is activated whenever a district has above-median. The unit of observation is thus a

district, observed at a yearly frequency between 1900 and 1993. Regressions include district and year fixed effects,

and standard errors are clustered at the district level. Bands report 95% confidence intervals.
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Figure E.6. Effect of the Influenza Shock Across Technology Classes

Notes. This figure reports the effect of the Influenza shock on innovation, by technology classes, in the US (Panel

E.6a) and in the UK (Panel E.6b). Each dot reports one triple-differences estimated effect of the baseline exposure

treatment with innovation; in each row, exposure is interacted with a sector-specific dummy variable. If the shock

only impacted innovation in pharmaceuticals, we would expect each coefficient but the pharmaceutical one to be

statistically equal to zero. Regressions are saturated with fixed effects; standard errors are two-way clustered at

the technology class and county (Panel E.6a) or district (Panel E.6b) level. Bands report 95% confidence intervals.
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Figure E.7. Alternative Staggered Triple Differences Estimators for the Effect of US Syn-
thetic Shocks on Innovation

Notes. This figure reports the estimated effect of synthetic innovation shocks in US counties on innovation activity

in the UK, using alternative estimators that explicitly allow for the staggered treatment roll-out design. The unit of

observation is a district-technology class pair observed at a yearly frequency between 1900 and 1939. The depen-

dent variable is the number of patents. The treatment variable is an indicator that, for a given district-technology,

returns value one after a synthetic innovation shock in that technology class is observed in at least one county

where the district has above-average out-migration. A synthetic innovation shock is observed whenever the resid-

ualized number of patents observed in the country is in the top 0.5% of the overall distribution. We estimate the

models on the full sample of districts, as well as excluding the top three areas in terms of patents granted: Lon-

don, Lancashire, and the South-West. We report the estimates obtained using four estimators that allow for the

inclusion of all the triple differences interactions of the fixed effects: Borusyak et al. (2021), De Chaisemartin and

D’Haultfœuille (2022), Cengiz et al. (2022), and Sun and Abraham (2021). Standard errors are clustered at the dis-

trict and technology class levels. Bands report 95% confidence intervals.
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Figure E.8. Flexible Triple Differences Effect of Family Member Out-Migration on Innova-
tion

Notes. This figure reports the effect of transatlantic emigration on innovation by inventors with the same surname

as the emigrant. The unit of observation is a surname-county couple, observed at a year frequency between 1870

and 1929. The dependent variable is the number of patents granted to inventors with a given surname in a given

county and year. The treatment is an interaction between year dummies and a variable that takes a value of one

the first time at least one individual from a given county and with a given surname emigrates to the US, and zero

otherwise. Each regression includes county-by-surname, surname-by-year, and county-by-year fixed effects. Stan-

dard errors are clustered at the surname level. Bands report 90% confidence intervals.
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Figure E.9. Alternative Staggered Double Differences Estimators for the Effect of Neigh-
borhood Out-Migration on Innovation

Notes. These figures report the effect of neighborhood out-migration on innovation. The units of observation are

individuals observed at a yearly frequency between 1900 and 1920. The sample consists of all males who did not

emigrate over the period and aged at least 18 in 1900. The dependent variable is the number of patents obtained

every year. The treatment variable is an indicator that returns value one after at least one person living in the

same neighborhood as the individual migrates to the United States. We report the estimates obtained using six

estimators that allow staggered roll-out of treatment assignment: the baseline two-way fixed effects (TWFE) es-

timator, Borusyak et al. (2021), Sun and Abraham (2021), Cengiz et al. (2022), Freyaldenhoven et al. (2019), and

De Chaisemartin and D’Haultfœuille (2022). Standard errors are clustered at the district level. Bands report 90%

confidence intervals.
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(b) Non-Return Migrants

Figure E.10. Flexible Difference-in-Differences Effect of Neighborhood-Level Out-
Migration on Innovation

Notes. These figures report the effect of neighborhood out-migration on innovation. The units of observation are

individuals observed at a yearly frequency between 1900 and 1920. The sample consists of all males who did not

emigrate over the period and aged at least 18 in 1900. The dependent variable is the number of patents obtained

every year. In Panel E.10a, the treatment variable is an indicator that returns value one after at least one person

that was living in the same neighborhood as the individual migrates to the United States; in Panel E.10b, we restrict

to emigrants that never return in the period of observation. Each model includes individual and parish-by-year

fixed effects. Standard errors are clustered at the district level. The estimates are obtained using the estimator

discussed in Borusyak et al. (2021). Bands report 95% confidence intervals.
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Figure E.11. Co-variate Balance for Individual-Level Design

Notes. These figures report the correlations between individual-level observable characteristics and treatment

status in the individual-level analysis. The units of observation are individuals observed at a yearly frequency

between 1900 and 1920. The sample consists of all males who did not emigrate over the period and aged at least

18 in 1900. Variables are observed in the 1911 census. Hence some of them are not pre-determined when the

treatment initiates. Each dot reports the correlation between the row variable and a dummy variable equal to one

if the individual is treated in the observation period and zero otherwise. Variables are standardized for readability.

Panel (A) reports the unweighted correlation; in Panel (B), individuals are weighted by their CEM weights. Standard

errors are clustered by division. Bands report 95% confidence intervals.
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